Autor: |
Huang, Daitao, Yue, Qin |
Předmět: |
|
Zdroj: |
IEEE Transactions on Information Theory; Jan2022, Vol. 68 Issue 1, p230-237, 8p |
Abstrakt: |
Let $n (>3)$ be a prime number and ${\mathbb {F}}_{2^{n}}$ a finite field of $2^{n}$ elements. Let $L ={\mathbb {F}}_{2^{n}}\cup \{\infty \}$ be the support set and $g(x)$ an irreducible polynomial of degree 6 over ${\mathbb {F}}_{2^{n}}$. In this paper, we obtain an upper bound on the number of extended irreducible binary Goppa codes $\Gamma (L, g)$ of degree 6 and length $2^{n}+1$. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|