Hibernation and daily torpor in Australian and New Zealand bats: does the climate zone matter?

Autor: Geiser, Fritz, Bondarenco, Artiom, Currie, Shannon E., Doty, Anna C., Körtner, Gerhard, Law, Bradley S., Pavey, Chris R., Riek, Alexander, Stawski, Clare, Turbill, Christopher, Willis, Craig K. R., Brigham, R. Mark
Předmět:
Zdroj: Australian Journal of Zoology; 2019, Vol. 67 Issue 6, p316-330, 15p
Abstrakt: We aim to summarise what is known about torpor use and patterns in Australian and New Zealand (ANZ) bats from temperate, tropical/subtropical and arid/semiarid regions and to identify whether and how they differ. ANZ bats comprise ~90 species from 10 families. Members of at least nine of these are known to use torpor, but detailed knowledge is currently restricted to the pteropodids, molossids, mystacinids, and vespertilionids. In temperate areas, several species can hibernate (use a sequence of multiday torpor bouts) in trees or caves mostly during winter and continue to use short bouts of torpor for the rest of the year, including while reproducing. Subtropical vespertilionids also use multiday torpor in winter and brief bouts of torpor in summer, which permit a reduction in foraging, probably in part to avoid predators. Like temperate-zone vespertilionids they show little or no seasonal change in thermal energetics during torpor, and observed changes in torpor patterns in the wild appear largely due to temperature effects. In contrast, subtropical blossom-bats (pteropodids) exhibit more pronounced daily torpor in summer than winter related to nectar availability, and this involves a seasonal change in physiology. Even in tropical areas, vespertilionids express short bouts of torpor lasting ~5 h in winter; summer data are not available. In the arid zone, molossids and vespertilionids use torpor throughout the year, including during desert heat waves. Given the same thermal conditions, torpor bouts in desert bats are longer in summer than in winter, probably to minimise water loss. Thus, torpor in ANZ bats is used by members of all or most families over the entire region, its regional and seasonal expression is often not pronounced or as expected, and it plays a key role in energy and water balance and other crucial biological functions that enhance longterm survival by individuals. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index