Abstrakt: |
In this case study, we describe the design and assembly of a cyber security testbed at Oak Ridge National Laboratory in Oak Ridge, TN, USA. The range is designed to provide agile reconfigurations to facilitate a wide variety of experiments for evaluations of cyber security tools--particularly those involving AI/ML. In particular, the testbed provides realistic test environments while permitting control and programmatic observations/data collection during the experiments. We have designed in the ability to repeat the evaluations, so additional tools can be evaluated and compared at a later time. The system is one that can be scaled up or down for experiment sizes. At the time of the conference we will have completed two full-scale, national, government challenges (experiments designed for head-to-head evaluation of competing tools for over $150K in prizes per competition) on this range. These challenges are evaluating the performance and operating costs for AI/ML-based cyber security tools for application into large, government-sized networks. These evaluations will be described as examples providing motivation and context for various design decisions and adaptations we have made. The first challenge measured end-point security tools against 100K file samples (benignware and malware) chosen across a range of file types. The second is an evaluation of network intrusion detection systems efficacy in identifying multi-step adversarial campaigns--involving reconnaissance, penetration and exploitations, lateral movement, etc--with varying levels of covertness in a highvolume (up to 10Gb/s), business network. The scale of each of these challenges requires automation systems to repeat, or simultaneously mirror identical the experiments for each ML tool under test. Providing an array of easy-to-difficult malicious activity for sussing out the true abilities of the AI/ML tools has been a particularly interesting and challenging aspect of designing and executing these challenge events. After the events, the range continues to be used for other research such as adversarial machine learning where the repeatability, scale, and automation required for the national challenge events become essential elements for research. [ABSTRACT FROM AUTHOR] |