Autor: |
Hoffman, David J., Fica-Contreras, Sebastian M., Pan, Junkun, Fayer, Michael D. |
Předmět: |
|
Zdroj: |
Journal of Chemical Physics; 11/28/2020, Vol. 153 Issue 20, p1-7, 7p |
Abstrakt: |
The infrared pulses used to generate nonlinear signals from a vibrational probe can cause heating via solvent absorption. Solvent absorption followed by rapid vibrational relaxation produces unwanted heat signals by creating spectral shifts of the solvent and probe absorptions. The signals are often isolated by "chopping," i.e., alternately blocking one of the incident pulses. This method is standard in pump--probe transient absorption experiments. As less heat is deposited into the sample when an incident pulse is blocked, the heat-induced spectral shifts give rise to artificial signals. Here, we demonstrate a new method that eliminates heat induced signals using pulse shaping to control pulse spectra. This method is useful if the absorption spectrum of the vibrational probe is narrow compared to the laser bandwidth. By using a pulse shaper to selectively eliminate only frequencies of light resonant with the probe absorption during the "off" shot, part of the pulse energy, and the resulting heat, is delivered to the solvent without generating the nonlinear signal. This partial heating reduces the difference heat signal between the on and off shots. The remaining solvent heat signal can be eliminated by reducing the wings of the on shot spectrum while still resonantly exciting the probe; the heat deposition from the on shot can be matched with that from the off shot, eliminating the solvent heat contribution to the signal. Modification of the pulse sequence makes it possible to measure only the heat signal, permitting the kinetics of heating to be studied. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|