Autor: |
Rodrigues, Felipe Silva, Miranda, Vanessa Silva, Carneiro-Lobo, Tatiana Correa, Scalabrini, Luiza Coimbra, Kruspig, Björn, Levantini, Elena, Murphy, Daniel J., Bassères, Daniela Sanchez |
Předmět: |
|
Zdroj: |
International Journal of Molecular Sciences; Aug2020, Vol. 21 Issue 16, p5806-5806, 1p |
Abstrakt: |
KRAS oncogenic mutations are widespread in lung cancer and, because direct targeting of KRAS has proven to be challenging, KRAS-driven cancers lack effective therapies. One alternative strategy for developing KRAS targeted therapies is to identify downstream targets involved in promoting important malignant features, such as the acquisition of a cancer stem-like and metastatic phenotype. Based on previous studies showing that KRAS activates nuclear factor kappa-B (NF-κB) through inhibitor of nuclear factor kappa-B kinase β (IKKβ) to promote lung tumourigenesis, we hypothesized that inhibition of IKKβ would reduce stemness, migration and invasion of KRAS-mutant human lung cancer cells. We show that KRAS-driven lung tumoursphere-derived cells exhibit stemness features and increased IKKβ kinase activity. IKKβ targeting by different approaches reduces the expression of stemness-associated genes, tumoursphere formation, and self-renewal, and preferentially impairs the proliferation of KRAS-driven lung tumoursphere-derived cells. Moreover, we show that IKKβ targeting reduces tumour cell migration and invasion, potentially by regulating both expression and activity of matrix metalloproteinase 2 (MMP2). In conclusion, our results indicate that IKKβ is an important mediator of KRAS-induced stemness and invasive features in lung cancer, and, therefore, might constitute a promising strategy to lower recurrence rates, reduce metastatic dissemination, and improve survival of lung cancer patients with KRAS-driven disease. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|