Autor: |
Monteil, Céline, Zaoui, Fabrice, Le Moine, Nicolas, Hendrickx, Frédéric |
Zdroj: |
Hydrology & Earth System Sciences Discussions; 2019, p1-16, 16p |
Abstrakt: |
Environmental modelling is complex, and models often require the calibration of several parameters that are not directly evaluable from a physical quantity or a field measurement. The R package caRamel has been designed to easily implement a multi-objective optimizer in the R environment to calibrate these parameters. A multiobjective calibration allows to find a compromise between different goals by defining a set of optimal parameters. The algorithm is a hybrid of the Multiobjective Evolutionary Annealing Simplex method (MEAS) and the Nondominated Sorting Genetic Algorithm II (ε-NSGA-II algorithm). The optimizer was initially developed for the calibration of hydrological models but can be used for any environmental model. The main function of the package, caRamel(), requires to define a multi-objective calibration function as well as bounds on the variation of the underlying parameters to optimize. CaRamel is well adapted to complex modelling. As an example, caRamel converges quickly and has a stable solution after 5,000 model evaluations with robust results for a real study case of a hydrological problem with 8 parameters and 3 objectives of calibration. The comparison with another well-known optimizer (i.e. MCO, for Multiple Criteria Optimization) confirms the quality of the algorithm. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|