Autor: |
Álvarez-Armenta, Andrés, Carvajal-Millán, Elizabeth, Pacheco-Aguilar, Ramón, García-Sánchez, Guillermina, Márquez-Ríos, Enrique, Scheuren-Acevedo, Susana María, Ramírez-Suárez, Juan Carlos |
Předmět: |
|
Zdroj: |
Food Technology & Biotechnology; Jan-Mar2019, Vol. 57 Issue 1, p39-47, 9p |
Abstrakt: |
Freezing conditions affect fish muscle protein functionality due to its denaturation/aggregation. However, jumbo squid (Dosidicus gigas) muscle protein functionality remains stable even after freezing, probably due to the presence of low-molecular-mass compounds (LMMC) as cryoprotectants. Thus, water-soluble LMMC (<1 kDa) fraction obtained from jumbo squid muscle was evaluated by Fourier transform infrared spectrometry. From its spectra, total carbohydrates, free monosaccharides, free amino acids and ammonium chloride were determined. Cryoprotectant capacity and protein cryostability conferred by LMMC were investigated by differential scanning calorimetry. Fraction partial characterization showed that the main components are free amino acids (18.84 mg/g), carbohydrates (67.1 µg/mg) such as monosaccharides (51.1 µg/mg of glucose, fucose and arabinose in total) and ammonium chloride (220.4 µg/mg). Arginine, sarcosine and taurine were the main amino acids in the fraction. LMMC, at the mass fraction present in jumbo squid muscle, lowered the water freezing point to -1.2 °C, inhibiting recrystallization at 0.66 °C. Significant myofibrillar protein stabilization by LMMC was observed after a freeze-thaw cycle compared to control (muscle after extraction of LMMC), proving the effectiveness on jumbo squid protein muscle cryostability. Osmolytes in LMMC fraction inhibited protein denaturation/aggregation and ice recrystallization, maintaining the muscle structure stable under freezing conditions. LMMC conferred protein cryostability even at the very low mass fraction in the muscle. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|