Abstrakt: |
Silver nanoparticle therapeutics using symbiotic organisms can offer solutions to the current obstacles in antimicrobial therapies, because of cost-effective and eco-friendly properties over chemical and physical methods. In this study, we aim to synthesize silver nanoparticles using lichen (Parmotrema tinctorum) extract and evaluation of its antibacterial properties. Synthesized silver nanoparticle were characterized on the basis of morphology, size, shape and nature by UV-visible spectroscopy, Transmission electron microscopy (TEM), Particle size analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. TEM analysis showed that synthesized silver nanoparticles were spherical in shape with maximum particles in size range within 15 ± 5.1 nm. Prolonged stability of synthesized silver nanoparticles was due to the presence of capping and stabilizing agent in form of biomolecules, which were confirmed by FTIR analysis. Furthermore, the bio-potentiality of synthesized silver nanoparticles was done against five pathogenic bacteria viz., Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Klebsiella pneumoniae using the agar well diffusion method. On the basis of zone of inhibition we can say that silver nanoparticles had antibacterial properties. Our results suggested that, prepared silver nanoparticle might be used for production of antibiotics and applied as potential microbial cell inhibitors. [ABSTRACT FROM AUTHOR] |