Abstrakt: |
Flavonol bisglycosides accumulate in plant vegetative tissues in response to abiotic stress, including simultaneous environmental perturbations (i.e. nitrogen deficiency and low temperature, NDLT), but disappear with recovery from NDLT. Previously, we determined that a recombinant Arabidopsis b-glucosidase (BGLU), BGLU15, hydrolyzes flavonol 3-O-β-glucoside-7-O-α-rhamnosides and flavonol 3-O-β-glucosides, forming flavonol 7-O-α-rhamnosides and flavonol aglycones, respectively. In this study, the transient expression of a BGLU15-Cherry fusion protein in onion epidermal cells demonstrated that BGLU15 was localized to the apoplast. Analysis of BGLU15 T-DNA insertional inactivation lines (bglu15-1 and bglu15-2) revealed negligible levels of BGLU15 transcripts, whereas its paralogs BGLU12 and BGLU16 were expressed in wild-type and bglu15 plants. The recombinant BGLU16 did not hydrolyze quercetin 3-O-β-glucoside-7-O-α-rhamnoside or rhamnosylated flavonols, but was active with the synthetic substrate, p-nitrophenyl- b-D-glucoside. In addition, shoots of both bglu15 mutants contained negligible flavonol 3-O-β-glucoside-7-Oa- rhamnoside hydrolase activity, whereas this activity increased by 223% within 2 d of NDLT recovery in wildtype plants. The levels of flavonol 3-O-β-glucoside-7-O-αrhamnosides and quercetin 3-O-β-glucoside were high and relatively unchanged in shoots of bglu15 mutants during recovery from NDLT, whereas rapid losses were apparent in wild-type shoots. Moreover, losses of two flavonol 3-Ob- neohesperidoside-7-O-α-rhamnosides and kaempferol 3-O-α-rhamnoside-7-O-α-rhamnoside were evident during recovery from NDLT, regardless of whether BGLU15 was present. A spike in a kaempferol 7-O-α-rhamnoside occurred with stress recovery, regardless of germplasm, suggesting a contribution from hydrolysis of kaempferol 3-O-β-neohesperidoside- 7-O-α-rhamnosides and/or kaempferol 3-O-αrhamnoside- 7-O-α-rhamnoside by hitherto unknown mechanisms. Thus, BGLU15 is essential for catabolism of flavonol 3-O-β-glucoside-7-O-α-rhamnosides and flavonol 3-O-β-glucosides in Arabidopsis. [ABSTRACT FROM AUTHOR] |