Autor: |
Kun Xie, Fox, Grace E., Jun Liu, Cheng Lyu, Lee, Jason C., Hui Kuang, Jacobs, Stephanie, Meng Li, Tianming Liu, Sen Song, Tsien, Joe Z. |
Předmět: |
|
Zdroj: |
Frontiers in Systems Neuroscience; 11/15/2016, Vol. 10, p1-28, 28p |
Abstrakt: |
There is considerable scientific interest in understanding how cell assemblies--the long-presumed computational motif--are organized so that the brain can generate intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the origin of intelligence is rooted in a power-of-two-based permutation logic (N = 2i-1), producing specific-to-general cell-assembly architecture capable of generating specific perceptions and memories, as well as generalized knowledge and flexible actions. We show that this power-of-two-based permutation logic is widely used in cortical and subcortical circuits across animal species and is conserved for the processing of a variety of cognitive modalities including appetitive, emotional and social information. However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler logic despite their distinct subtypes. Interestingly, this specific-to-general permutation logic remained largely intact although NMDA receptors--the synaptic switch for learning and memory--were deleted throughout adulthood, suggesting that the logic is developmentally pre-configured. Moreover, this computational logic is implemented in the cortex via combining a random-connectivity strategy in superficial layers 2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers 2/3 cliques--which preferentially encode specific and low-combinatorial features and project inter-cortically--is ideal for maximizing cross-modality novel patternextraction, pattern-discrimination and pattern-categorization using sparse code, consequently explaining why it requires hippocampal offline-consolidation. In contrast, the nonrandomness in layers 5/6--which consists of few specific cliques but a higher portion of more general cliques projecting mostly to subcortical systems--is ideal for feedback-control of motivation, emotion, consciousness and behaviors. These observations suggest that the brain's basic computational algorithm is indeed organized by the power-of-two-based permutation logic. This simple mathematical logic can account for brain computation across the entire evolutionary spectrum, ranging from the simplest neural networks to the most complex. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|