Autor: |
Gutknecht, E., Reffray, G., Gehlen, M., Triyulianti, I., Berlianty, D., Gaspar, P. |
Předmět: |
|
Zdroj: |
Geoscientific Model Development Discussions; 2015, Vol. 8 Issue 8, p6669-6706, 38p |
Abstrakt: |
In the framework of the INDESO (Infrastructure evelopment of Space Oceanography) project, an operational ocean forecasting system was developed to monitor the state of the Indonesian seas in terms of circulation, biogeochemistry and fisheries. This fore-casting system combines a suite of numerical models connecting physical and biogeochemical variables to population dynamics of large marine predators (tunas). The physical/biogeochemical coupled component (INDO12BIO configuration) covers a large region extending from the western Pacific Ocean to the Eastern Indian Ocean at 1/12° resolution. The OPA/NEMO physical ocean model and the PISCES biogeochemical model are coupled in "on-line" mode without degradation in space and time. The operational global ocean forecasting system (1=4°) operated by Mercator Ocean provides the physical forcing while climatological open boundary conditions are prescribed for the biogeochemistry. This paper describes the skill assessment of the INDO12BIO configuration. Model skill is assessed by evaluating a reference hindcast simulation covering the last 8 years (2007-2014). Model results are compared to satellite, climatological and in situ observations. Diagnostics are performed on chlorophyll a, primary production, mesozooplankton, nutrients and oxygen. Model results reproduce the main characteristics of biogeochemical tracer distributions in space and time. The seasonal cycle of chlorophyll a is in phase with satellite observations. The northern and southern parts of the archipelago present a distinct seasonal cycle, with higher chlorophyll biomass in the southern (northern) part during SE (NW) monsoon. Nutrient and oxygen concentrations are correctly reproduced in terms of horizontal and vertical distributions. The biogeochemical content of water masses entering in the archipelago as well as the water mass transformation across the archipelago conserves realistic vertical distribution in Banda Sea and at the exit of the archipelago. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|