Unlocking Cognitive Analysis Potential in Alzheimer's Disease Clinical Trials: Investigating Hierarchical Linear Models for Analyzing Novel Measurement Burst Design Data.

Autor: Wang G; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.; Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA., Hassenstab J; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA., Li Y; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA., Aschenbrenner AJ; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA., McDade EM; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA., Llibre-Guerra J; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA., Bateman RJ; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA., Xiong C; Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA.
Jazyk: angličtina
Zdroj: Statistics in medicine [Stat Med] 2024 Nov 25. Date of Electronic Publication: 2024 Nov 25.
DOI: 10.1002/sim.10292
Abstrakt: Measurement burst designs typically administer brief cognitive tests four times per day for 1 week, resulting in a maximum of 28 data points per week per test for every 6 months. In Alzheimer's disease clinical trials, utilizing measurement burst designs holds great promise for boosting statistical power by collecting huge amount of data. However, appropriate methods for analyzing these complex datasets are not well investigated. Furthermore, the large amount of burst design data also poses tremendous challenges for traditional computational procedures such as SAS mixed or Nlmixed. We propose to analyze burst design data using novel hierarchical linear mixed effects models or hierarchical mixed models for repeated measures. Through simulations and real-world data applications using the novel SAS procedure Hpmixed, we demonstrate these hierarchical models' efficiency over traditional models. Our sample simulation and analysis code can serve as a catalyst to facilitate the methodology development for burst design data.
(© 2024 John Wiley & Sons Ltd.)
Databáze: MEDLINE