Autor: |
Penabeï S; Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada., Meesungnoen J; Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada., Jay-Gerin JP; Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada. |
Jazyk: |
angličtina |
Zdroj: |
International journal of molecular sciences [Int J Mol Sci] 2024 Sep 29; Vol. 25 (19). Date of Electronic Publication: 2024 Sep 29. |
DOI: |
10.3390/ijms251910490 |
Abstrakt: |
This study conducts a comparative analysis of cystamine (RSSR), a disulfide, and cysteamine (RSH), its thiol monomer, to evaluate their efficacy as radioprotectors and antioxidants under high linear energy transfer (LET) and high-dose-rate irradiation conditions. It examines their interactions with reactive primary species produced during the radiolysis of the aqueous ferrous sulfate (Fricke) dosimeter, offering insights into the mechanisms of radioprotection and highlighting their potential to enhance the therapeutic index of radiation therapy, particularly in advanced techniques like FLASH radiotherapy. Using Monte Carlo multi-track chemical modeling to simulate the radiolytic oxidation of ferrous to ferric ions in Fricke-cystamine and Fricke-cysteamine solutions, this study assesses the radioprotective and antioxidant properties of these compounds across a variety of irradiation conditions. Concentrations were varied in both aerated (oxygen-rich) and deaerated (hypoxic) environments, simulating conditions akin to healthy tissue and tumors. Both cystamine and cysteamine demonstrate radioprotective and strong antioxidant properties. However, their effectiveness varies significantly depending on the concentration employed, the conditions of irradiation, and whether or not environmental oxygen is present. Specifically, excluding potential in vivo toxicity, cysteamine substantially reduces the adverse effects of ionizing radiation under aerated, low-LET conditions at concentrations above ~1 mM. However, its efficacy is minimal in hypoxic environments, irrespective of the concentration used. Conversely, cystamine consistently offers robust protective effects in both oxygen-rich and oxygen-poor conditions. The distinct protective capacities of cysteamine and cystamine underscore cysteamine's enhanced potential in radiotherapeutic settings aimed at safeguarding healthy tissues from radiation-induced damage while effectively targeting tumor tissues. This differential effectiveness emphasizes the need for personalized radioprotective strategies, tailored to the specific environmental conditions of the tissue involved. Implementing such approaches is crucial for optimizing therapeutic outcomes and minimizing collateral damage in cancer treatment. |
Databáze: |
MEDLINE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|