In situ chemoproteomic profiling reveals itaconate inhibits de novo purine biosynthesis in pathogens.
Autor: | Liu Z; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China., Liu D; Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China., Wang C; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. Electronic address: chuwang@pku.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | Cell reports [Cell Rep] 2024 Sep 24; Vol. 43 (9), pp. 114737. Date of Electronic Publication: 2024 Sep 13. |
DOI: | 10.1016/j.celrep.2024.114737 |
Abstrakt: | Itaconate serves as an immune-specific metabolite that regulates gene transcription and metabolism in both host and pathogens. S-itaconation is a post-translational modification that regulates immune response; however, its antimicrobial mechanism under the physiological condition remains unclear. Here, we apply a bioorthogonal itaconate probe to perform global profiling of S-itaconation in living pathogens, including S. Typhimurium, S. aureus, and P. aeruginosa. Some functional enzymes are covalently modified by itaconate, including those involved in the de novo purine biosynthesis pathway. Further biochemical studies demonstrate that itaconate suppresses this specific pathway to limit Salmonella growth by inhibiting the initiator purF to lower de novo purine biosynthesis and simultaneously targeting the guaABC cluster to block the salvage route. Our chemoproteomic study provides a global portrait of S-itaconation in multiple pathogens and offers a valuable resource for finding susceptible targets to combat drug-resistant pathogens in the future. Competing Interests: Declaration of interests The authors declare no competing interests. (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |