Occupational exposure to arsenic and leukopenia risk: Toxicological alert.

Autor: Bidu NS; Pharmacy Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia/UFBA, Salvador, Brazil.; Clinical Toxicology Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia/UFBA, Salvador, Brazil., Lemos DS; Undersecretary of Safety and Health at Work of the Brazil Federal District, Distrito Federal, Health Department, Brasilia, Brazil., Fernandes BJD; Clinical Toxicology Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia/UFBA, Salvador, Brazil.
Jazyk: angličtina
Zdroj: Toxicology and industrial health [Toxicol Ind Health] 2024 Dec; Vol. 40 (12), pp. 637-642. Date of Electronic Publication: 2024 Sep 02.
DOI: 10.1177/07482337241277261
Abstrakt: Arsenic and its inorganic compounds affect numerous organs and systemic functions, such as the nervous and hematopoietic systems, liver, kidneys, and skin. Despite a large number of studies on arsenic toxicity, rare reports have investigated the leukopenia incidence in workers exposed to arsenic. In workplaces, the main source of workers' exposure is the contaminated air by the inorganic arsenic in mines, arsenic or copper smelter industries, and chemical factories. Erythropoiesis inhibition is one of the arsenic effects and it is related to regulatory factor GATA-1. This factor is necessary for the normal differentiation of early erythroid progenitors. JAK-STAT is an important intracellular signal transduction pathway responsible for the mediating normal functions of several cytokines related to cell proliferation and hematopoietic systems development and regulation. Arsenic inactivates JAK-STAT by inhibiting JAK tyrosine kinase and using the IFNγ pathway. The intravascular hemolysis starts after the absorption phase when arsenic binds to the globin of hemoglobin in erythrocytes and is transported into the body, which increases the oxidation of sulfhydryl groups in hemoglobin. So, this article intends to highlight the potential leukopenia risk via inhalation for workers exposed to arsenic and suggests a possible mechanism for this leukopenia through the JAK-signal transducer and activator of transcription (STAT) pathway inhibition.
Competing Interests: Declaration of conflicting interestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Databáze: MEDLINE