Relativistic and quantum electrodynamics effects on NMR shielding tensors of TlX (X = H, F, Cl, Br, I, At) molecules.

Autor: Kozioł K; Narodowe Centrum Badań Jadrowych (NCBJ), Andrzeja Sołtana 7, 05-400 Otwock-Świerk, Poland., Aucar IA; Instituto de Modelado e Innovación Tecnológica (UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad, 5460 Corrientes, Argentina.; Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands., Gaul K; Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany., Berger R; Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany., Aucar GA; Instituto de Modelado e Innovación Tecnológica (UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad, 5460 Corrientes, Argentina.
Jazyk: angličtina
Zdroj: The Journal of chemical physics [J Chem Phys] 2024 Aug 14; Vol. 161 (6).
DOI: 10.1063/5.0213653
Abstrakt: The results of relativistic calculations of nuclear magnetic resonance shielding tensors (σ) for the thallium monocation (Tl+), thallium hydride (TlH), and thallium halides (TlF, TlCl, TlBr, TlI, and TlAt) are presented as obtained within a four-component polarization propagator formalism and a two-component linear response approach within the zeroth-order regular approximation. In addition to a detailed analysis of relativistic effects performed in this work, some quantum electrodynamical (QED) effects on those nuclear magnetic resonance shieldings and other small contributions are estimated. A strong dependence of σ(Tl) on the bonding partner is found, together with a very weak dependence of QED effects with them. In order to explain the trends observed, the excitation patterns associated with relativistic ee (or paramagnetic-like) and pp (or diamagnetic-like) contributions to σ are analyzed. For this purpose, the electronic spin-free and spin-dependent contributions are separated within the two-component zeroth-order regular approximation, and the influence of spin-orbit coupling on involved molecular orbitals is studied, which allows for a thorough understanding of the underlying mechanisms.
(© 2024 Author(s). Published under an exclusive license by AIP Publishing.)
Databáze: MEDLINE