Engineering new-to-nature biochemical conversions by combining fermentative metabolism with respiratory modules.
Autor: | Schulz-Mirbach H; Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany., Krüsemann JL; Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.; Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Charitéplatz 1, 10117, Berlin, Germany., Andreadaki T; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany., Nerlich JN; Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Charitéplatz 1, 10117, Berlin, Germany., Mavrothalassiti E; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany., Boecker S; Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany.; Berliner Hochschule für Technik (BHT), Seestr. 64, 13347, Berlin, Germany., Schneider P; Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany., Weresow M; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany., Abdelwahab O; Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Charitéplatz 1, 10117, Berlin, Germany., Paczia N; Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany., Dronsella B; Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany., Erb TJ; Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.; Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, 35043, Marburg, Germany., Bar-Even A; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany., Klamt S; Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany., Lindner SN; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany. steffen.lindner@charite.de.; Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Charitéplatz 1, 10117, Berlin, Germany. steffen.lindner@charite.de. |
---|---|
Jazyk: | angličtina |
Zdroj: | Nature communications [Nat Commun] 2024 Aug 07; Vol. 15 (1), pp. 6725. Date of Electronic Publication: 2024 Aug 07. |
DOI: | 10.1038/s41467-024-51029-x |
Abstrakt: | Anaerobic microbial fermentations provide high product yields and are a cornerstone of industrial bio-based processes. However, the need for redox balancing limits the array of fermentable substrate-product combinations. To overcome this limitation, here we design an aerobic fermentative metabolism that allows the introduction of selected respiratory modules. These can use oxygen to re-balance otherwise unbalanced fermentations, hence achieving controlled respiro-fermentative growth. Following this design, we engineer and characterize an obligate fermentative Escherichia coli strain that aerobically ferments glucose to stoichiometric amounts of lactate. We then re-integrate the quinone-dependent glycerol 3-phosphate dehydrogenase and demonstrate glycerol fermentation to lactate while selectively transferring the surplus of electrons to the respiratory chain. To showcase the potential of this fermentation mode, we direct fermentative flux from glycerol towards isobutanol production. In summary, our design permits using oxygen to selectively re-balance fermentations. This concept is an advance freeing highly efficient microbial fermentation from the limitations imposed by traditional redox balancing. (© 2024. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |