Utilizing Silk Sericin as a Biomaterial for Drug Encapsulation in a Hydrogel Matrix with Polycaprolactone: Formulation and Evaluation of Antibacterial Activity.
Autor: | Deb D; Institute of Advanced Study in Science and Technology (An Autonomous Institute Under DST, Govt. of India), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India., Khatun B; Institute of Advanced Study in Science and Technology (An Autonomous Institute Under DST, Govt. of India), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India., M BD; Institute of Advanced Study in Science and Technology (An Autonomous Institute Under DST, Govt. of India), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India., Khan MR; Institute of Advanced Study in Science and Technology (An Autonomous Institute Under DST, Govt. of India), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India., Sen Sarma N; Institute of Advanced Study in Science and Technology (An Autonomous Institute Under DST, Govt. of India), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India., Sankaranarayanan K; Institute of Advanced Study in Science and Technology (An Autonomous Institute Under DST, Govt. of India), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. |
---|---|
Jazyk: | angličtina |
Zdroj: | ACS omega [ACS Omega] 2024 Jul 16; Vol. 9 (30), pp. 32706-32716. Date of Electronic Publication: 2024 Jul 16 (Print Publication: 2024). |
DOI: | 10.1021/acsomega.4c02453 |
Abstrakt: | Hydrogels have emerged as a potential tool for enhancing bioavailability and regulating the controlled release of therapeutic agents. Owing to its excellent biocompatibility, silk sericin-based hydrogels have garnered interest in biomedical applications. This study focuses on synthesizing a soft hydrogel by blending silk sericin (SS) and polycaprolactone (PCL) at room temperature. The physicochemical characteristics of the hydrogels have been estimated by different analytical techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The rheological studies demonstrate the non-Newtonian behavior of the hydrogels. Further, the porosity analysis indicates a commendable absorption capacity of the hydrogels. The swelling degree of the hydrogels has been checked in both distilled water and buffer solutions of different pHs (2-10). Moreover, the drug release profile of the hydrogels, using diclofenac sodium (DS) as a model drug, has revealed a substantial release of approximately 67% within the first 130 min with a drug encapsulation efficiency of 60.32%. Moreover, both the empty and the drug-loaded hydrogels have shown antibacterial properties against Gram-positive and Gram-negative bacteria, with the drug-loaded hydrogels displaying enhanced effectiveness. Additionally, the prepared hydrogels are biodegradable, demonstrating their future prospects in biomedical applications. Competing Interests: The authors declare no competing financial interest. (© 2024 The Authors. Published by American Chemical Society.) |
Databáze: | MEDLINE |
Externí odkaz: |