The transcriptional repressor B cell lymphoma 6 regulates CXCR3 chemokine and human leukocyte antigen II expression in endothelial cells.
Autor: | Franco Acevedo A; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, USA., Mack JJ; Department of Cardiology, University of California, Los Angeles, USA., Valenzuela NM; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, USA. Electronic address: npyburn@mednet.ucla.edu. |
---|---|
Jazyk: | angličtina |
Zdroj: | American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons [Am J Transplant] 2024 Dec; Vol. 24 (12), pp. 2157-2173. Date of Electronic Publication: 2024 Jul 27. |
DOI: | 10.1016/j.ajt.2024.07.026 |
Abstrakt: | Interferon gamma (IFN-γ) induces an endothelial proimmunogenic phenotype through the JAK/STAT1 pathway, which can shape the activation of alloreactive leukocytes in transplant rejection. In immune cells, the DNA-binding protein B cell lymphoma 6 (BCL6) controls the transcription of inflammatory genes. This study tested if BCL6 modulates IFN-γ-induced gene expression in endothelial cells. In vitro, BCL6 was IFN-γ-inducible in primary human endothelium, along with CXCR3 chemokines and human leukocyte antigen (HLA). BCL6, HLA II, and CXCL9 were also increased in human cardiac transplants during acute rejection. Knockdown of BCL6 augmented, whereas overexpression and BTB domain inhibitors (BCL6-BTBi) suppressed, HLA II and CXCR3 chemokine expression but not HLA I. Further, BCL6 had a greater effect on HLA-DR and DP but was less involved in regulating HLA-DQ expression. The effect correlated with BCL6 binding motifs in or near affected genes. The BCL6 DNA recognition sequence was highly similar to that of STAT1, and BTBi reduced STAT1's transcriptional activity in vitro. Our results show for the first time that BCL6 selectively controls IFN-γ-induced endothelial gene expression, advancing our understanding of the endogenous mechanisms regulating donor immunogenicity. Competing Interests: Declaration of competing interest The authors of this manuscript have no conflicts of interest to disclose as described by the American Journal of Transplantation. (Copyright © 2024. Published by Elsevier Inc.) |
Databáze: | MEDLINE |
Externí odkaz: |