Ubiquitous Order-Disorder Transition in the Mn Antisite Sublattice of the (MnBi 2 Te 4 )(Bi 2 Te 3 ) n Magnetic Topological Insulators.

Autor: Sahoo M; Leibniz IFW Dresden, Helmholtzstraße 20, D-01069, Dresden, Germany.; Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062, Dresden, Germany.; Würzburg-Dresden Cluster of Excellence ct.qmat, Dresden, Germany.; Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universitá di Parma, Parco delle Scienze 7A, Parma, I-43124, Italy., Onuorah IJ; Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universitá di Parma, Parco delle Scienze 7A, Parma, I-43124, Italy., Folkers LC; Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062, Dresden, Germany.; Würzburg-Dresden Cluster of Excellence ct.qmat, Dresden, Germany., Kochetkova E; Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062, Dresden, Germany.; Van der Waals-Zeeman Institute, Department of Physics and Astronomy, University of Amsterdam, Science Park 094, Amsterdam, 1098 XH, Netherlands., Chulkov EV; Donostia International Physics Center, Sebastián, 20018 Donostia-San, Spain.; Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Ciencias Químicas, Universidad del País Vasco UPV/EHU, Donostia-San Sebastián, 20018, Spain.; Centro de Física de Materiales (CFM-MPC), Centro Mixto (CSIC-UPV/EHU), Donostia-San Sebastián, 20018, Spain.; Saint Petersburg State University, Saint Petersburg, 199034, Russia., Otrokov MM; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain., Aliev ZS; Baku State University, Baku, AZ1148, Azerbaijan.; Institute of Physics Ministry of Science and Education Republic of Azerbaijan, Baku, AZ1143, Azerbaijan., Amiraslanov IR; Baku State University, Baku, AZ1148, Azerbaijan.; Institute of Physics Ministry of Science and Education Republic of Azerbaijan, Baku, AZ1143, Azerbaijan., Wolter AUB; Leibniz IFW Dresden, Helmholtzstraße 20, D-01069, Dresden, Germany., Büchner B; Leibniz IFW Dresden, Helmholtzstraße 20, D-01069, Dresden, Germany.; Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062, Dresden, Germany.; Würzburg-Dresden Cluster of Excellence ct.qmat, Dresden, Germany., Corredor LT; Leibniz IFW Dresden, Helmholtzstraße 20, D-01069, Dresden, Germany., Wang C; Laboratory for Muon Spin Spectroscopy, Paul-Scherrer-Institute, Villigen PSI, CH-5232, Switzerland., Salman Z; Laboratory for Muon Spin Spectroscopy, Paul-Scherrer-Institute, Villigen PSI, CH-5232, Switzerland., Isaeva A; Leibniz IFW Dresden, Helmholtzstraße 20, D-01069, Dresden, Germany.; Van der Waals-Zeeman Institute, Department of Physics and Astronomy, University of Amsterdam, Science Park 094, Amsterdam, 1098 XH, Netherlands.; Faculty of Physics, Technical University of Dortmund, Otto-Hahn-Str. 4, 44221, Dortmund, Germany.; Research Center Future Energy Materials and Systems (RC FEMS), Germany., De Renzi R; Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universitá di Parma, Parco delle Scienze 7A, Parma, I-43124, Italy., Allodi G; Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universitá di Parma, Parco delle Scienze 7A, Parma, I-43124, Italy.
Jazyk: angličtina
Zdroj: Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Adv Sci (Weinh)] 2024 Sep; Vol. 11 (34), pp. e2402753. Date of Electronic Publication: 2024 Jul 08.
DOI: 10.1002/advs.202402753
Abstrakt: Magnetic topological insulators (TIs) herald a wealth of applications in spin-based technologies, relying on the novel quantum phenomena provided by their topological properties. Particularly promising is the (MnBi 2 Te 4 )(Bi 2 Te 3 ) n layered family of established intrinsic magnetic TIs that can flexibly realize various magnetic orders and topological states. High tunability of this material platform is enabled by manganese-pnictogen intermixing, whose amounts and distribution patterns are controlled by synthetic conditions. Here, nuclear magnetic resonance and muon spin spectroscopy, sensitive local probe techniques, are employed to scrutinize the impact of the intermixing on the magnetic properties of (MnBi 2 Te 4 )(Bi 2 Te 3 ) n  and MnSb 2 Te 4 . The measurements not only confirm the opposite alignment between the Mn magnetic moments on native sites and antisites in the ground state of MnSb 2 Te 4 , but for the first time directly show the same alignment in (MnBi 2 Te 4 )(Bi 2 Te 3 ) n with n = 0, 1 and 2. Moreover, for all compounds, the static magnetic moment of the Mn antisite sublattice is found to disappear well below the intrinsic magnetic transition temperature, leaving a homogeneous magnetic structure undisturbed by the intermixing. The findings provide a microscopic understanding of the crucial role played by Mn-Bi intermixing in (MnBi 2 Te 4 )(Bi 2 Te 3 ) n and offer pathways to optimizing the magnetic gap in its surface states.
(© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje