Involvement of dysregulated hippocampal histone H3K9 methylation at the promoter of the BDNF gene in impaired memory extinction.

Autor: Oga K; Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan., Fuchikami M; Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan. mf547@hiroshima-u.ac.jp., Kobayashi H; Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan., Miyagi T; Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan., Fujita S; Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan., Fujita S; Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan., Okada S; Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan., Morinobu S; Department of Psychology, School of Faculty of Health and Wellness Sciences, Hiroshima International University, Kure, Japan.
Jazyk: angličtina
Zdroj: Psychopharmacology [Psychopharmacology (Berl)] 2024 Nov; Vol. 241 (11), pp. 2363-2374. Date of Electronic Publication: 2024 Jun 28.
DOI: 10.1007/s00213-024-06640-7
Abstrakt: Rationale: Since the precise mechanisms of posttraumatic stress disorder (PTSD) remain unknown, effective treatment interventions have not yet been established. Impaired extinction of fear memory (EFM) is one of the core symptoms of PTSD and is associated with stress-induced epigenetic change in gene expression.
Objectives: In this study, we examined whether the involvement of histone H3 lysine 9 dimethylation (H3K9me2) in EFM is mediated through brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and whether BIX01294, a selective G9a and GLP histone methyltransferase inhibitor, could be treatment for impaired EFM in an animal model of PTSD.
Methods: The single prolonged stress (SPS) paradigm was used to model PTSD. We measured BDNF mRNA levels by RT-PCR, and H3K9me2 levels in the BDNF gene promoters by chromatin immunoprecipitation-qPCR. After undergoing contextual fear conditioning and hippocampal injection of BIX01294, male rats were subjected to extinction training and extinction testing and their freezing times and BDNF mRNA levels were measured.
Results: Compared to sham rats, SPS rats showed decreased BDNF mRNA levels 2 h after extinction training, no significant changes in levels of global H3K9me2 prior to extinction training, and increased levels of H3K9me2 in BDNF gene promoter IV, but not in BDNF gene promoter I. Administration of BIX01294 ameliorated the decrease in BDNF mRNA levels 2 h after extinction training and subsequently alleviated impaired EFM in extinction tests in SPS rats.
Conclusion: We conclude that reduced hippocampal levels of BDNF mRNA due to increase in H3K9me2 levels may play a role in PTSD-associated EFM impairment, and BIX01294 could be a PTSD treatment option.
(© 2024. The Author(s).)
Databáze: MEDLINE