Exosomal circ_CCDC7/gga-miR-6568-3p/Pax7 axis accelerates the differentiation of chicken embryonic stem cells infected with subgroup J avian leukosis virus.

Autor: Zeng X; State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China., Wang R; State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China., Tang S; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China., Dong X; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China., Liao L; State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China., Chen S; State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China., Kong J; State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China., Chen L; State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China., Li Y; State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China., Shao G; State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China., Zhang X; State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China., Wong YH; Division of Life Sciences and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China., Xie Q; State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China. Electronic address: qmx@scau.edu.cn.
Jazyk: angličtina
Zdroj: Poultry science [Poult Sci] 2024 Aug; Vol. 103 (8), pp. 103898. Date of Electronic Publication: 2024 May 23.
DOI: 10.1016/j.psj.2024.103898
Abstrakt: Exosome-mediated horizontal and vertical transmission of subgroup J avian leukosis virus (ALV-J) in poultry flocks can lead to growth inhibition and severe immunosuppression. However, there are few reports on the early infection of chicken embryonic stem cells (cESCs) with ALV-J. In this study, we confirmed that early infection with ALV-J can accelerate the differentiation of cESCs and promote the secretion of exosomes. To investigate the modulation strategy of ALV-J in cESCs, circRNA sequencing was performed for further analysis. A total of 305 differentially expressed circRNAs (DECs) were obtained, including 71 upregulated DECs. Circ-CCDC7 was found to be the most upregulated DEC and was assessed by qRT-PCR, with the result consistent with the result of circRNA-seq. Based on qRT-PCR, gga-miR-6568-3p was found to be the target of the top 3 DECs, including circ-CCDC7, and the stem cell marker gene Pax7 was identified as the target gene of gga-miR-6568-3p. This study demonstrated that exosomal circ-CCDC7/gga-miR-6568-3p/Pax7 accelerates the differentiation of cESCs after early infection with ALV-J.
Competing Interests: DISCLOSURES All authors declare no conflict of interest.
(Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE