Cholesin receptor signalling is active in cardiovascular system-associated adipose tissue and correlates with SGLT2i treatment in patients with diabetes.
Autor: | Ryk A; Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15, 92-215, Lodz, Poland., Marcinkiewicz A; Department of Cardiac Surgery, Medical University of Lodz, Lodz, Poland., Chrzanowski J; Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15, 92-215, Lodz, Poland., Michalak AM; Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15, 92-215, Lodz, Poland.; Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland., Dróżdz I; Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland., Burzyński J; Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15, 92-215, Lodz, Poland., Krejca M; Department of Cardiac Surgery, Medical University of Lodz, Lodz, Poland., Fendler W; Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15, 92-215, Lodz, Poland. wojciech.fendler@umed.lodz.pl. |
---|---|
Jazyk: | angličtina |
Zdroj: | Cardiovascular diabetology [Cardiovasc Diabetol] 2024 Jun 20; Vol. 23 (1), pp. 211. Date of Electronic Publication: 2024 Jun 20. |
DOI: | 10.1186/s12933-024-02322-y |
Abstrakt: | Background: Recently deorphanized G protein-coupled receptor 146 (GPR146) was shown to respond to signal from a newly identified hormone-cholesin-and to play a role in hepatic lipid metabolism. However, the importance of its biological activity in human organism remains elusive, mainly due to the lack of studies on human tissues up to this point. This study aimed to identify the cholesin receptor-associated genes and clinical factors linked with their expression in cardiovascular system and associated adipose tissues. Methods: Right cardiac auricle, aortic wall, saphenous vein, and adipose tissue (periaortic-PAT, epicardial-EAT, thymic-TAT) samples were collected during coronary artery bypass grafting. Clinical records of the study participants were assessed for the presence of diabetes, medications taken and serum cholesterol levels. GPR146 mRNA expression in all gathered tissues was assessed with qPCR, and RNA seqencing was performed in selected tissues of 20 individuals to identify pathways associated with GPR146 expression. Results: We included 46 participants [37 male, 23 with type 2 diabetes, median age 68.50 (Q1-Q3: 63.00-72.00) years, BMI 28.39 (26.06-31.49) kg/m 2 ]. GPR146 expression in adipose tissues significantly correlated with BMI, c-peptide, total cholesterol, and LDL concentrations. Selected metabolic pathways were significantly and positively enriched in GPR146-dependent manner. GPR146-coexpressed genes contained key regulators of lipid metabolism involved in such pathways as fatty acid metabolism, tricarboxilic acid cycle and peroxisomal metabolism. Those genes correlated positively with serum concentrations of LDL, HDL, and total cholesterol. SGLT2i treatment was associated with inversion of GPR146-related signature in EAT, suggesting potential impact on cholesin-GPR146 network. Conclusions: GPR146 expression is associated with serum lipids and metabolically-relevant transcriptomic changes in EAT similar to SGLT2i-associated ones. (© 2024. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |