Incorporating AI into cardiovascular diseases prevention-insights from Singapore.
Autor: | Dalakoti M; Cardiovascular Research Institute, National University Heart Centre, Singapore.; Cardiovascular Metabolic Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, Singapore.; Ng Teng Fong General Hospital, Singapore., Wong S; Group Chief Technology Office, National University Health System, Singapore., Lee W; Group Chief Technology Office, National University Health System, Singapore., Lee J; Group Chief Technology Office, National University Health System, Singapore., Yang H; Cardiovascular Research Institute, National University Heart Centre, Singapore.; Cardiovascular Metabolic Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, Singapore., Loong S; Cardiovascular Research Institute, National University Heart Centre, Singapore.; Cardiovascular Metabolic Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, Singapore., Loh PH; Cardiovascular Research Institute, National University Heart Centre, Singapore.; Cardiovascular Metabolic Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, Singapore.; Ng Teng Fong General Hospital, Singapore., Tyebally S; Cardiovascular Research Institute, National University Heart Centre, Singapore.; Cardiovascular Metabolic Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, Singapore.; Ng Teng Fong General Hospital, Singapore., Djohan A; Cardiovascular Research Institute, National University Heart Centre, Singapore.; Cardiovascular Metabolic Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, Singapore.; Ng Teng Fong General Hospital, Singapore., Ong J; Cardiovascular Research Institute, National University Heart Centre, Singapore.; Cardiovascular Metabolic Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, Singapore.; Ng Teng Fong General Hospital, Singapore., Yip J; Cardiovascular Research Institute, National University Heart Centre, Singapore.; Cardiovascular Metabolic Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, Singapore.; Group Chief Technology Office, National University Health System, Singapore., Ngiam KY; Group Chief Technology Office, National University Health System, Singapore., Foo R; Cardiovascular Research Institute, National University Heart Centre, Singapore.; Cardiovascular Metabolic Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, Singapore. |
---|---|
Jazyk: | angličtina |
Zdroj: | The Lancet regional health. Western Pacific [Lancet Reg Health West Pac] 2024 May 27; Vol. 48, pp. 101102. Date of Electronic Publication: 2024 May 27 (Print Publication: 2024). |
DOI: | 10.1016/j.lanwpc.2024.101102 |
Abstrakt: | Improved upstream primary prevention of cardiovascular disease (CVD) would enable more individuals to lead lives free of CVD. However, there remain limitations in the current provision of CVD primary prevention, where artificial intelligence (AI) may help to fill the gaps. Using the data informatics capabilities at the National University Health System (NUHS), Singapore, empowered by the Endeavour AI system, and combined large language model (LLM) tools, our team has created a real-time dashboard able to capture and showcase information on cardiovascular risk factors at both individual and geographical level- CardioSight. Further insights such as medication records and data on area-level socioeconomic determinants allow a whole-of-systems approach to promote healthcare delivery, while also allowing for outcomes to be tracked effectively. These are paired with interventions, such as the CHronic diseAse Management Program (CHAMP), to coordinate preventive cardiology care at a pilot stage within our university health system. AI tools in synergy allow the identification of at-risk patients and actionable steps to mitigate their health risks, thereby closing the gap between risk identification and effective patient care management in a novel CVD prevention workflow. Competing Interests: The authors declare no conflicts of interest relevant to the publication of this study. (© 2024 The Authors.) |
Databáze: | MEDLINE |
Externí odkaz: |