Effects of high temperature and LPS injections on the hemocytes of the crab Neohelice granulata.
Autor: | Ayres BS; Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil., Varela Junior AS; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil., Corcini CD; Faculdade de Medicina Veterinária, Universidade Federal de Pelotas- UFPEL, Campus Universitário, S / N, Capão do Leão, Pelotas, RS 96160-000, Brazil., Lopes EM; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil., Nery LEM; Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil., Maciel FE; Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil. Electronic address: maciel-fe@hotmail.com. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of invertebrate pathology [J Invertebr Pathol] 2024 Jul; Vol. 205, pp. 108144. Date of Electronic Publication: 2024 May 28. |
DOI: | 10.1016/j.jip.2024.108144 |
Abstrakt: | Temperature fluctuations, particularly elevated temperatures, can significantly affect immune responses. These fluctuations can influence the immune system and alter its response to infection signals, such as lipopolysaccharide (LPS). Therefore, this study was designed to investigate how high temperatures and LPS injections collectively influence the immune system of the crab Neohelice granulata. Two groups were exposed to 20 °C (control) or 33 °C for four days. Subsequently, half were injected with 10 μL of physiological crustacean (PS), while the rest received 10 μL of LPS [0.1 mg.kg -1 ]. After 30 min, the hemolymph samples were collected. Hemocytes were then isolated and assessed for various parameters using flow cytometry, including cell integrity, DNA fragmentation, total hemocyte count (THC), differential hemocyte count (DHC), reactive oxygen species (ROS) level, lipid peroxidation (LPO), and phagocytosis. Results showed lower cell viability at 20 °C, with more DNA damage in the same LPS-injected animals. There was no significant difference in THC, but DHC indicated a decrease in hyaline cells (HC) at 20 °C following LPS administration. In granular cells (GC), an increase was observed after both PS and LPS were injected at the same temperature. In semi-granular cells (SGC), there was a decrease at 20 °C with the injection of LPS, while at a temperature of 33 °C, the SGC there was a decrease only in SGC injected with LPS. Crabs injected with PS and LPS at 20 °C exhibited higher levels of ROS in GC and SGC, while at 33 °C, the increase was observed only in GC and SGC cells injected with LPS. A significant increase in LPO was observed only in SGC cells injected with PS and LPS at 20 °C and 33 °C. Phagocytosis decreased in animals at 20 °C with both injections and exposed to 33 °C only in those injected with LPS. These results suggest that elevated temperatures induce changes in immune system parameters and attenuate the immune responses triggered by LPS. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier Inc. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |