Autor: |
Zhao X; College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China., Gao Q; College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China., Wang H; College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China., Yue J; College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China., An D; College of Plant Protection, Northwest A&F University, Yangling, China., Li B; Department of Tabacco Production, Sichuan Province Company of Tobacco Corporation in China, Chengdu, China., Yan F; Panzhihua City company of Sichuan province company of Tobacco Corporation in China, Panzhihua city, Sichuan provience, China., Carmen SM; Centro Nacional de Biotecnologia, CSIC, Madrid, Spain., Zhao Y; Department of Plant Protection, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China., Zhou H; College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China., Zhao M; College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China.; Department of Plant protection, Key Laboratory of the Development and Resource Utilization of Biological Pesticide in Inner Mongolia, Hohhot, China. |
Abstrakt: |
Trans-acting small interfering RNAs (tasiRNAs) are 21-nt phased (phased siRNAs) resulting from successive DCL-catalyzed processing from the end of a double-stranded RNA substrate originating from the RDR of an AGO-catalyzed cleaved RNA at a micro RNA target site. Plant tasiRNAs have been synthesized to produce synthetic tasiRNAs (syn-tasiRNAs) targeting viral RNAs that confer viral resistance. In this study, we engineered syn-tasiRNAs to target potato virus Y (PVY) infection by replacing five native siRNAs of TAS1c with 210-bp fragments from the coat protein (CP) region of the PVY genome. The results showed that the transient expression of syn-tasiR-CPpvy2 in Nicotiana benthamiana (N. benthamiana) plants conferred antiviral resistance, supported by the absence of PVY infection symptoms and viral accumulation. This indicated that syn-tasiR-CPpvy2 successfully targeted and silenced the PVY CP gene, effectively inhibiting viral infection. syn-tasiR-CPpvy1 displayed attenuated symptoms and decreased viral accumulation in these plants However, severe symptoms of PVY infection and a similar amount of viral accumulation as the control were observed in plants expressing syn-tasiR-CPpvy3. syn-tasiR-CPpvy/pvx, which targets both PVY and potato virus X (PVX), was engineered using a single precursor. After the transient expression of syn-tasiR-CPpvy/pvx3 and syn-tasiR-CPpvy/pvx5 in N. benthamiana, the plants were resistant to both PVY and PVX. These results suggested that engineered syn-tasiRNAs could not only specifically induce antiviral resistance against one target virus but could also be designed for multi-targeted silencing of different viruses, thereby preventing complex virus infection in plants. |