Paris saponin VII inhibits triple-negative breast cancer by targeting the MEK/ERK/STMN1 signaling axis.

Autor: Zhang Y; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250022, China., Wei S; Department of Oncology, The Affiliated Qingdao Hiser hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao 266071, China., Zhang Q; Institute of Integrated Medicine, Qingdao University, Qingdao 266071, China., Zhang Y; Institute of Integrated Medicine, Qingdao University, Qingdao 266071, China., Sun C; College of Traditional Chinese Medicine, Shandong Second Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, Shandong Province 261000, China. Electronic address: scgdoctor@126.com.
Jazyk: angličtina
Zdroj: Phytomedicine : international journal of phytotherapy and phytopharmacology [Phytomedicine] 2024 Jul 25; Vol. 130, pp. 155746. Date of Electronic Publication: 2024 May 15.
DOI: 10.1016/j.phymed.2024.155746
Abstrakt: Background: Triple-negative breast cancer (TNBC) is a category of breast cancer characterized with high molecular heterogeneity. Owing to the lack of effective therapeutic strategies, patients with TNBC have a poor prognosis. Paris saponin VII (PSⅦ), a steroidal saponin extracted from the rhizome of Trichillium tschonoskii Maxim, exhibits excellent anti-cancer activity in a variety of solid tumors. However, the role and potential mechanism of PSⅦ against TNBC remain unexplored.
Purpose: This study aimed to elucidate the therapeutic effects of PSⅦ against TNBC and explore the potential mechanism of action.
Methods: We combined the analysis of public single-cell sequencing data with weighted gene co-expression network analysis (WGCNA) to identity differentially expressed genes (DEGs) that distinguished malignant and normal epithelial cells in TNBC. Subsequently, the biological features of DEGs in TNBC were evaluated. Gene set enrichment analysis (GSEA) was used to define potential pathways associated with the DEGs. The pharmacological activity of PSⅦ for TNBC was evidenced via in vitro and in vivo experiments, and molecular docking, molecular dynamics (MD), surface plasmon resonance (SPR) assay and western blotting were employed to confirm the relative mechanisms.
Results: Single-cell sequencing and WGCNA revealed STMN1 as a pivotal biomarker of TNBC. STMN1 overexpression in TNBC was associated with poor patient prognosis. GSEA revealed a significant accumulation of STMN1 within the MAPK signaling pathway. Furthermore, In vitro experiments showed that PSⅦ showed significantly suppressive actions on the proliferation, migration and invasion abilities for TNBC cells, while inducing apoptosis. Molecular docking, MD analysis and SPR assay indicated a robust interaction between PSⅦ and the MEK protein. Western blotting revealed that PSⅦ may inhibit tumor progression by suppressing the phosphorylation of MEK1/2 and the downstream phosphorylation of ERK1/2 and STMN1. Intraperitoneal injection of PSⅦ (10 mg/kg) notably reduced tumor growth by 71.26 % in a 4T1 xenograft model.
Conclusion: In our study, the systems biology method was used to identify potential therapeutic targets for TNBC. In vitro and in vivo experiments demonstrated PSⅦ suppresses cancer progression by targeting the MEK/ERK/STMN1 signaling axis. For the first time, the inhibition of STMN1 phosphorylation has been indicated as a possible mechanism for the anticancer effects of PSⅦ. These results emphasize the potential value of PSⅦ as a promising anti-cancer drug candidate for further development in the field of TNBC therapeutics.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Shandong Second Medical University. Published by Elsevier GmbH.. All rights reserved.)
Databáze: MEDLINE