Transgenerational impact of maternal zinc deficiency on offspring metabolic outcomes in Drosophila melanogaster.
Autor: | Sanusi KO; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Physiology, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Human Physiology, Faculty of Health Sciences, Al-Hikmah University, Ilorin 1601, Nigeria., Abubakar MB; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Physiology, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman., Ibrahim KG; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Physiology, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Basic Medical and Dental Sciences, Zarqa University, Zarqa 13110, Jordan; School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Republic of South of Africa., Imam MU; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto 2346, Nigeria; Department of Medical Biochemistry, Usmanu Danfodiyo University, Sokoto 2346, Nigeria. Electronic address: mustyimam@gmail.com. |
---|---|
Jazyk: | angličtina |
Zdroj: | The Journal of nutritional biochemistry [J Nutr Biochem] 2024 Aug; Vol. 130, pp. 109669. Date of Electronic Publication: 2024 May 15. |
DOI: | 10.1016/j.jnutbio.2024.109669 |
Abstrakt: | Maternal zinc deficiency significantly influences fetal development and long-term health outcomes, yet its transgenerational effects remain poorly understood. This study aims to investigate the transgenerational effects of maternal zinc deficiency on metabolic outcomes in Drosophila melanogaster. Zinc deficiency was induced in Drosophila by incorporating TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine) into their diet. Offspring (F1 to F3) were maintained on a standard diet for subsequent analyses. Various metabolic markers, including glucose, trehalose, glycogen, and triglyceride levels, were assessed, and gene expression analyses were conducted to examine the molecular responses across generations. Significant reductions in locomotor performance in female F1 flies and increased body weight in the F2 generation were observed. Maternal zinc deficiency exhibited gender- and generation-specific impacts on metabolic markers. Notably, an adaptive response in the F3 generation included increased catalase activity and total antioxidant capacity, along with decreased malondialdehyde levels. Gene expression analyses revealed upregulation of DILP2 mRNA across generations and significant variations in PEPCK, SOD1, CAT, EGR, and UPD2 mRNA levels, demonstrating intricate responses to maternal zinc deficiency. This study provides a holistic understanding of the consequences of maternal zinc deficiency, emphasizing the complex interplay between zinc status and metabolic outcomes across generations in Drosophila. These findings lay the foundation for future research elucidating the underlying molecular mechanisms, with potential implications for humans. The insights gained contribute to informing targeted interventions aimed at optimizing offspring health in the context of maternal zinc deficiency. Competing Interests: Declaration of competing interest The authors have no relevant financial or non-financial interests to disclose. (Copyright © 2024 Elsevier Inc. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |