Autor: |
Voicu SN; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania., Gheran CV; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania., Balta C; Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania., Hermenean A; Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania., Callewaert M; Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, CEDEX 2, F-51685 Reims, France., Chuburu F; Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, CEDEX 2, F-51685 Reims, France., Dinischiotu A; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania. |
Abstrakt: |
The aim of this study was the investigation of biochemical and histological changes induced in different tissues, as a result of the subcutaneous administration of Gd nanohydrogels (GdDOTA⸦CS-TPP/HA) in a CD-1 mouse strain. The nanohydrogels were obtained by encapsulating contrast agents (GdDOTA) in a biocompatible polymer matrix composed of chitosan (CS) and hyaluronic acid (HA) through the ionic gelation process. The effects of Gd nanohydrogels on the redox status were evaluated by measuring specific activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), as well as oxidative stress markers, such as reduced glutathione (GSH), malondialdehyde (MDA), advanced oxidation protein products (AOPP), and protein-reactive carbonyl groups (PRCG), in the liver, kidney, and heart tissues. The nitrosylated proteins expression were analyzed with Western Blot and the serum biochemical markers were measured with spectrophotometric methods. Also, a histological analysis of CD-1 mouse tissues was investigated. These results indicated that Gd nanohydrogels could potentially be an alternative to current MRI contrast agents thanks to their low toxicity in vivo. |