Unveiling the genomic landscape of Salmonella enterica serotypes Typhimurium, Newport, and Infantis in Latin American surface waters: a comparative analysis.

Autor: Chen Z; Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA., Toro M; Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA.; Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile., Moreno-Switt AI; Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile., Adell AD; Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile., Delgado-Suárez EJ; Facultad de Medicina Veterinaria y Zootecnia, Universidad de Nacional Autónoma de México, Mexico City, Mexico., Bonelli RR; Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Oliveira CJB; Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Brazil., Reyes-Jara A; Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile., Huang X; Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA.; Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA., Albee B; Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA., Grim CJ; Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA., Allard M; Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA., Tallent SM; Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA., Brown EW; Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA., Bell RL; Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA., Meng J; Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA.; Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA.
Jazyk: angličtina
Zdroj: Microbiology spectrum [Microbiol Spectr] 2024 May 02; Vol. 12 (5), pp. e0004724. Date of Electronic Publication: 2024 Mar 28.
DOI: 10.1128/spectrum.00047-24
Abstrakt: Surface waters are considered ecological habitats where Salmonella enterica can persist and disseminate to fresh produce production systems. This study aimed to explore the genomic profiles of S. enterica serotypes Typhimurium, Newport, and Infantis from surface waters in Chile, Mexico, and Brazil collected between 2019 and 2022. We analyzed the whole genomes of 106 S . Typhimurium, 161 S . Newport, and 113 S . Infantis isolates. Our phylogenetic analysis exhibited distinct groupings of isolates by their respective countries except for a notable case involving a Chilean S . Newport isolate closely related to two Mexican isolates, showing 4 and 13 single nucleotide polymorphisms of difference, respectively. The patterns of the most frequently detected antimicrobial resistance genes varied across countries and serotypes. A strong correlation existed between integron carriage and genotypic multidrug resistance (MDR) across serotypes in Chile and Mexico ( R > 0.90, P < 0.01), while integron(s) were not detected in any of the Brazilian isolates. By contrast, we did not identify any strong correlation between plasmid carriage and genotypic MDR across diverse countries and serotypes.IMPORTANCEUnveiling the genomic landscape of S. enterica in Latin American surface waters is pivotal for ensuring public health. This investigation sheds light on the intricate genomic diversity of S. enterica in surface waters across Chile, Mexico, and Brazil. Our research also addresses critical knowledge gaps, pioneering a comprehensive understanding of surface waters as a reservoir for multidrug-resistant S. enterica . By integrating our understanding of integron carriage as biomarkers into broader MDR control strategies, we can also work toward targeted interventions that mitigate the emergence and dissemination of MDR in S. enterica in surface waters. Given its potential implications for food safety, this study emphasizes the critical need for informed policies and collaborative initiatives to address the risks associated with S. enterica in surface waters.
Competing Interests: The authors declare no conflict of interest.
Databáze: MEDLINE