Nonradiology Health Care Professionals Significantly Benefit From AI Assistance in Emergency-Related Chest Radiography Interpretation.
Autor: | Rudolph J; Department of Radiology, University Hospital, LMU Munich, Munich, Germany. Electronic address: jan.rudolph@med.uni-muenchen.de., Huemmer C; XP Technology and Innovation, Siemens Healthcare GmbH, Forchheim, Germany., Preuhs A; XP Technology and Innovation, Siemens Healthcare GmbH, Forchheim, Germany., Buizza G; XP Technology and Innovation, Siemens Healthcare GmbH, Forchheim, Germany., Hoppe BF; Department of Radiology, University Hospital, LMU Munich, Munich, Germany., Dinkel J; Department of Radiology, University Hospital, LMU Munich, Munich, Germany; Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany; Department of Radiology, Asklepios Fachklinik München, Gauting, Germany., Koliogiannis V; Department of Radiology, University Hospital, LMU Munich, Munich, Germany., Fink N; Department of Radiology, University Hospital, LMU Munich, Munich, Germany., Goller SS; Department of Radiology, University Hospital, LMU Munich, Munich, Germany., Schwarze V; Department of Radiology, University Hospital, LMU Munich, Munich, Germany., Mansour N; Department of Radiology, University Hospital, LMU Munich, Munich, Germany., Schmidt VF; Department of Radiology, University Hospital, LMU Munich, Munich, Germany., Fischer M; Department of Medicine I, University Hospital, LMU Munich, Munich, Germany., Jörgens M; Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany., Ben Khaled N; Department of Medicine II, University Hospital, LMU Munich, Munich, Germany., Liebig T; Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany., Ricke J; Department of Radiology, University Hospital, LMU Munich, Munich, Germany., Rueckel J; Department of Radiology, University Hospital, LMU Munich, Munich, Germany; Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany., Sabel BO; Department of Radiology, University Hospital, LMU Munich, Munich, Germany. |
---|---|
Jazyk: | angličtina |
Zdroj: | Chest [Chest] 2024 Jul; Vol. 166 (1), pp. 157-170. Date of Electronic Publication: 2024 Jan 29. |
DOI: | 10.1016/j.chest.2024.01.039 |
Abstrakt: | Background: Chest radiographs (CXRs) are still of crucial importance in primary diagnostics, but their interpretation poses difficulties at times. Research Question: Can a convolutional neural network-based artificial intelligence (AI) system that interprets CXRs add value in an emergency unit setting? Study Design and Methods: A total of 563 CXRs acquired in the emergency unit of a major university hospital were retrospectively assessed twice by three board-certified radiologists, three radiology residents, and three emergency unit-experienced nonradiology residents (NRRs). They used a two-step reading process: (1) without AI support; and (2) with AI support providing additional images with AI overlays. Suspicion of four suspected pathologies (pleural effusion, pneumothorax, consolidations suspicious for pneumonia, and nodules) was reported on a five-point confidence scale. Confidence scores of the board-certified radiologists were converted into four binary reference standards of different sensitivities. Performance by radiology residents and NRRs without AI support/with AI support were statistically compared by using receiver-operating characteristics (ROCs), Youden statistics, and operating point metrics derived from fitted ROC curves. Results: NRRs could significantly improve performance, sensitivity, and accuracy with AI support in all four pathologies tested. In the most sensitive reference standard (reference standard IV), NRR consensus improved the area under the ROC curve (mean, 95% CI) in the detection of the time-critical pathology pneumothorax from 0.846 (0.785-0.907) without AI support to 0.974 (0.947-1.000) with AI support (P < .001), which represented a gain of 30% in sensitivity and 2% in accuracy (while maintaining an optimized specificity). The most pronounced effect was observed in nodule detection, with NRR with AI support improving sensitivity by 53% and accuracy by 7% (area under the ROC curve without AI support, 0.723 [0.661-0.785]; with AI support, 0.890 [0.848-0.931]; P < .001). Radiology residents had smaller, mostly nonsignificant gains in performance, sensitivity, and accuracy with AI support. Interpretation: We found that in an emergency unit setting without 24/7 radiology coverage, the presented AI solution features an excellent clinical support tool to nonradiologists, similar to a second reader, and allows for a more accurate primary diagnosis and thus earlier therapy initiation. Competing Interests: Financial/Nonfinancial Disclosures The authors have reported to CHEST the following: B. O. S. and J. Rueckel received financial compensation for speaker's activities by Siemens Healthineers (lectures at conferences). C. H., A. P., and G. B. received financial compensation by Siemens Healthineers (employees). None declared (J. Rudolph, B. F. H., J. D., V. K., N. F., S. S. G., V. S., N. M., V. F. S., M. F., M. J., N. B. K., T. L., J. Ricke). (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |