Visible-Light Driven Control Over Triply and Quadruply Hydrogen-Bonded Supramolecular Assemblies.

Autor: Hilton EM; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.; School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK., Jinks MA; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.; School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK., Burnett AD; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK., Warren NJ; School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK., Wilson AJ; School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.; School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.; Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
Jazyk: angličtina
Zdroj: Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2024 Apr 05; Vol. 30 (20), pp. e202304033. Date of Electronic Publication: 2024 Feb 19.
DOI: 10.1002/chem.202304033
Abstrakt: Supramolecular polymers offer tremendous potential to produce new "smart" materials, however, there remains a need to develop systems that are responsive to external stimuli. In this work, visible-light responsive hydrogen-bonded supramolecular polymers comprising photoresponsive supramolecular synthons (I-III) consisting of two hydrogen bonding motifs (HBMs) connected by a central ortho-tetrafluorinated azobenzene have been characterized by DOSY NMR and viscometry. Comparison of different hydrogen-bonding motifs reveals that assembly in the low and high concentration regimes is strongly influenced by the strength of association between the HBMs. I, Incorporating a triply hydrogen-bonded heterodimer, was found to exhibit concentration dependent switching between a monomeric pseudo-cycle and supramolecular oligomer through intermolecular hydrogen bonding interactions between the HBMs. II, Based on the same photoresponsive scaffold, and incorporating a quadruply hydrogen-bonded homodimer was found to form a supramolecular polymer which was dependent upon the ring-chain equilibrium and thus dependent upon both concentration and photochemical stimulus. Finally, III, incorporating a quadruply hydrogen-bonded heterodimer represents the first photoswitchable AB type hydrogen-bonded supramolecular polymer. Depending on the concentration and photostationary state, four different assemblies dominate for both monomers II and III, demonstrating the ability to control supramolecular assembly and physical properties triggered by light.
(© 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.)
Databáze: MEDLINE