Hydroxyapatite microspheres used as a drug delivery system for gliosarcoma strain 9l/Lacz treatment by photodynamic therapy protocols.
Autor: | Ambrosio JAR; Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil., Marmo VLM; Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil., Gonçalves EP; Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil., Pinto JG; Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil., Ferreira-Strixino J; Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil., Raniero LJ; Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil., Beltrame M; Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil., Simioni AR; Research and Development Institute - IPD, Vale do Paraíba University - UNIVAP, Av. Shishima Hifumi, CEP: 12244-000. São José dos Campos, SP 2911, Brazil. Electronic address: simioni@univap.br. |
---|---|
Jazyk: | angličtina |
Zdroj: | Photodiagnosis and photodynamic therapy [Photodiagnosis Photodyn Ther] 2023 Dec; Vol. 44, pp. 103830. Date of Electronic Publication: 2023 Oct 16. |
DOI: | 10.1016/j.pdpdt.2023.103830 |
Abstrakt: | Background: Hydroxyapatite (HAp) presents similarities with the human bone structure and presents properties such as biodegradability, biocompatibility, and osteoconductivity, which favors its use in prostheses implants and enables its use as a vehicle for the delivery of photosensitizers (PS) from systems of release (DDS) for photodynamic therapy applications Methods: In this work was to synthesized hydroxyapatite microspheres (meHAp), encapsulated with chloroaluminium phthalocyanine (ClAlPc), for DDS. meHAp was synthesized using vaterite as a template. The drug was encapsulated by mixing meHAp and a 50.0 mg.mL -1 ClAlPc solution. Photochemical, photophysical, and photobiological studies characterized the system. Results: The images from the SEM analysis showed the spherical form of the particles. All spectroscopic results showed excellent photophysical parameters of the drug studied when served in the meHAp system. The incorporation efficiency was 57.8 %. The trypan blue exclusion test results showed a significant reduction (p < 0.05) in cell viability for the groups treated with PDT at all concentrations above 250 μg.mL -1 . In 9 L/lacZ gliosarcoma cells, PDT mediated at concentrations from 250 to 62.5 µg.mL -1 reduced cell viability by more than 98 %. In the cell internalization study, it was possible to observe the internalization of phthalocyanines at 37 °C, with the accumulation of PS in the cytoplasm and inside the nucleus in the two tested concentrations. Conclusions: From all the results presented throughout the article, the meHAp system shows promise for use as a modified release system (DSD) in photodynamic therapy. Competing Interests: Declaration of Competing Interest The authors have declared no conflict of interest. (Copyright © 2023 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |