An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis.
Autor: | Bellantuono L; Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Università degli Studi di Bari Aldo Moro, 70124, Bari, Italy.; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125, Bari, Italy., Tommasi R; Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Università degli Studi di Bari Aldo Moro, 70124, Bari, Italy., Pantaleo E; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125, Bari, Italy.; Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy., Verri M; Unit of Endocrine Organs and Neuromuscolar Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy.; Dipartimento di Scienze, Università degli Studi Roma Tre, 00146, Roma, Italy., Amoroso N; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125, Bari, Italy.; Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy., Crucitti P; Unit of Thoracic Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy., Di Gioacchino M; Dipartimento di Scienze, Università degli Studi Roma Tre, 00146, Roma, Italy. michael.digioacchino@uniroma3.it., Longo F; Unit of Thoracic Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy., Monaco A; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125, Bari, Italy.; Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy., Naciu AM; Unit of Metabolic Bone and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy., Palermo A; Unit of Metabolic Bone and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy., Taffon C; Unit of Endocrine Organs and Neuromuscolar Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy., Tangaro S; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125, Bari, Italy.; Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy., Crescenzi A; Unit of Endocrine Organs and Neuromuscolar Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy., Sodo A; Dipartimento di Scienze, Università degli Studi Roma Tre, 00146, Roma, Italy., Bellotti R; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125, Bari, Italy.; Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy. |
---|---|
Jazyk: | angličtina |
Zdroj: | Scientific reports [Sci Rep] 2023 Oct 03; Vol. 13 (1), pp. 16590. Date of Electronic Publication: 2023 Oct 03. |
DOI: | 10.1038/s41598-023-43856-7 |
Abstrakt: | Raman spectroscopy shows great potential as a diagnostic tool for thyroid cancer due to its ability to detect biochemical changes during cancer development. This technique is particularly valuable because it is non-invasive and label/dye-free. Compared to molecular tests, Raman spectroscopy analyses can more effectively discriminate malignant features, thus reducing unnecessary surgeries. However, one major hurdle to using Raman spectroscopy as a diagnostic tool is the identification of significant patterns and peaks. In this study, we propose a Machine Learning procedure to discriminate healthy/benign versus malignant nodules that produces interpretable results. We collect Raman spectra obtained from histological samples, select a set of peaks with a data-driven and label independent approach and train the algorithms with the relative prominence of the peaks in the selected set. The performance of the considered models, quantified by area under the Receiver Operating Characteristic curve, exceeds 0.9. To enhance the interpretability of the results, we employ eXplainable Artificial Intelligence and compute the contribution of each feature to the prediction of each sample. (© 2023. Springer Nature Limited.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |