Autor: |
Weiser-Fuchs MT; Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.; Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria., Maggauer E; Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria., van Poppel MNM; Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria.; BioTechMed, 8010 Graz, Austria., Csapo B; Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria., Desoye G; Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.; Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria., Köfeler HC; BioTechMed, 8010 Graz, Austria.; Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria., Groselj-Strele A; Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria., Trajanoski S; Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria., Fluhr H; Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.; Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria., Obermayer-Pietsch B; Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria.; Department of Obstetrics and Gynecology, Endocrinology Lab Platform, 8036 Graz, Austria., Jantscher-Krenn E; Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.; Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria.; BioTechMed, 8010 Graz, Austria. |
Abstrakt: |
(1) Background: Pregnancy presents a challenge to maternal glucose homeostasis; suboptimal adaptations can lead to gestational diabetes mellitus (GDM). Human milk oligosaccharides (HMOs) circulate in maternal blood in pregnancy and are altered with GDM, suggesting influence of glucose homeostasis on HMOs. We thus assessed the HMO response to glucose load during an oral glucose tolerance test (OGTT) and investigated HMO associations with glucose tolerance/insulin sensitivity in healthy pregnant women. (2) Methods: Serum of 99 women, collected at 0 h, 1 h and 2 h during a 75 g OGTT at 24-28 gestational weeks was analyzed for HMOs (2'FL, 3'SLN, LDFT, 3'SL) by HPLC; plasma glucose, insulin and C-peptide were analyzed by standard biochemistry methods. (3) Results: Serum 3'SL concentrations significantly increased from fasting to 1 h after glucose load, while concentrations of the other HMOs were unaltered. Higher 3'SL at all OGTT time points was associated with a generally more diabetogenic profile, with higher hepatic insulin resistance (HOMA-IR), lower insulin sensitivity (Matsuda index) and higher insulin secretion (C-peptide index 1). (4) Conclusions: Rapid increase in serum 3'SL post-oral glucose load (fasted-fed transition) indicates utilization of plasma glucose, potentially for sialylation of lactose. Associations of sialylated HMOs with a more diabetogenic profile suggest sustained adaptations to impaired glucose homeostasis in pregnancy. Underlying mechanisms or potential consequences of observed HMO changes remain to be elucidated. |