Adding Tibial Tuberosity Medialization to Medial Patellofemoral Ligament Reconstruction Reduces Lateral Patellar Maltracking During Multidirectional Motion in a Computational Simulation Model.
Autor: | Elias JJ; Department of Health Sciences, Cleveland Clinic Akron General, Cleveland, Ohio, U.S.A., Cosgarea AJ; Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, U.S.A., Tanaka MJ; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A. |
---|---|
Jazyk: | angličtina |
Zdroj: | Arthroscopy, sports medicine, and rehabilitation [Arthrosc Sports Med Rehabil] 2023 Jul 10; Vol. 5 (4), pp. 100753. Date of Electronic Publication: 2023 Jul 10 (Print Publication: 2023). |
DOI: | 10.1016/j.asmr.2023.100753 |
Abstrakt: | Purpose: To determine whether adding tibial tuberosity medialization to medial patellofemoral ligament (MPFL) reconstruction reduces lateral patellar maltracking during a dynamic multidirectional activity and to investigate when medial patellofemoral contact pressures are elevated during daily activities, such as squatting. Methods: Seven computational models representing knees with patellar instability, including lateral patellar maltracking, were evaluated following simulated MPFL reconstruction (bisect offset index > .75). Tibial tuberosity medialization was added to MPFL reconstruction for each model. Patellar tracking during multidirectional motion was evaluated by simulating pivot landing. Analysis of pivoting focused on early flexion (5° to 40°). Patellofemoral contact pressures during daily function were evaluated by simulating knee squatting. Data were analyzed with paired comparisons between MPFL reconstruction with and without tuberosity medialization. Results: The patella dislocated during pivoting for 2 models with an isolated MPFL reconstruction and for 1 model including tibial tuberosity medialization. Adding tibial tuberosity medialization to MPFL reconstruction significantly decreased bisect offset index by ∼0.1 from 5° to 40° ( P < .03). For knee squatting, medializing the tibial tuberosity significantly increased maximum medial contract pressure by ∼0.5 MPa from 30° to 85° ( P < .05) but did not significantly influence maximum lateral pressure. Conclusions: In this study of simulated multidirectional motion, MPFL reconstruction did not sufficiently constrain the patella for some knees. Adding tibial tuberosity medialization to MPFL reconstruction in these models reduced lateral patellar maltracking during multidirectional motion but increased pressure applied to medial cartilage during squatting. Clinical Relevance: After establishing the influence of tibial tuberosity medialization on patellar maltracking for an idealized population, as was done in the current study, future simulation studies can be performed to better determine the anatomical characteristics of patients for whom tibial tuberosity medialization is needed to reduce the risk of postoperative patellar maltracking. (© 2023 The Authors.) |
Databáze: | MEDLINE |
Externí odkaz: |