Nickle-cobalt alloy nanocrystals inhibit activation of inflammasomes.

Autor: Lin J; Department of Neurosurgery, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Molecular Medicine, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China., Dong L; Department of Neurosurgery, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Molecular Medicine, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China., Liu YM; Department of Neurosurgery, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Molecular Medicine, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China., Hu Y; Department of Neurosurgery, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Molecular Medicine, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China., Jiang C; Department of Neurosurgery, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Molecular Medicine, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China., Liu K; Department of Neurosurgery, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Molecular Medicine, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China., Liu L; Department of Neurosurgery, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Molecular Medicine, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China., Song YH; Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China., Sun M; Department of Neurosurgery, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Molecular Medicine, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China., Xiang XC; The WUT-AMU Franco-Chinese Institute, Wuhan University of Technology, Wuhan 430070, China., Qu K; Department of Neurosurgery, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Molecular Medicine, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230027, China., Lu Y; Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China., Wen LP; Department of Neurosurgery, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Molecular Medicine, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China., Yu SH; Department of Neurosurgery, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Molecular Medicine, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China.
Jazyk: angličtina
Zdroj: National science review [Natl Sci Rev] 2023 Jun 26; Vol. 10 (8), pp. nwad179. Date of Electronic Publication: 2023 Jun 26 (Print Publication: 2023).
DOI: 10.1093/nsr/nwad179
Abstrakt: Activation of inflammasomes-immune system receptor sensor complexes that selectively activate inflammatory responses-has been associated with diverse human diseases, and many nanomedicine studies have reported that structurally and chemically diverse inorganic nanomaterials cause excessive inflammasome activation. Here, in stark contrast to reports of other inorganic nanomaterials, we find that nickel-cobalt alloy magnetic nanocrystals (NiCo NCs) actually inhibit activation of NLRP3, NLRC4 and AIM2 inflammasomes. We show that NiCo NCs disrupt the canonical inflammasome ASC speck formation process by downregulating the lncRNA Neat1 , and experimentally confirm that the entry of NiCo NCs into cells is required for the observed inhibition of inflammasome activation. Furthermore, we find that NiCo NCs inhibit neutrophil recruitment in an acute peritonitis mouse model and relieve symptoms in a colitis mouse model, again by inhibiting inflammasome activation. Beyond demonstrating a highly surprising and apparently therapeutic impact for an inorganic nanomaterial on inflammatory responses, our work suggests that nickel- and cobalt-containing nanomaterials may offer an opportunity to design anti-inflammatory nanomedicines for the therapeutics of macrophage-mediated diseases.
(© The Author(s) 2023. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje