The fungal intestinal microbiota predict the development of bronchopulmonary dysplasia in very low birthweight newborns.
Autor: | Willis KA, Silverberg M, Martin I, Abdelgawad A, Karabayir I, Halloran BA, Myers ED, Desai JP, White CT, Lal CV, Ambalavanan N, Peters BM, Jain VG, Akbilgic O, Tipton L, Jilling T, Cormier SA, Pierre JF, Talati AJ |
---|---|
Jazyk: | angličtina |
Zdroj: | MedRxiv : the preprint server for health sciences [medRxiv] 2023 Nov 10. Date of Electronic Publication: 2023 Nov 10. |
DOI: | 10.1101/2023.05.29.23290625 |
Abstrakt: | Rationale: Bronchopulmonary dysplasia (BPD) is the most common morbidity affecting very preterm infants. Gut fungal and bacterial microbial communities contribute to multiple lung diseases and may influence BPD pathogenesis. Methods: We performed a prospective, observational cohort study comparing the multikingdom fecal microbiota of 144 preterm infants with or without moderate to severe BPD by sequencing the bacterial 16S and fungal ITS2 ribosomal RNA gene. To address the potential causative relationship between gut dysbiosis and BPD, we used fecal microbiota transplant in an antibiotic-pseudohumanized mouse model. Comparisons were made using RNA sequencing, confocal microscopy, lung morphometry, and oscillometry. Results: We analyzed 102 fecal microbiome samples collected during the second week of life. Infants who later developed BPD showed an obvious fungal dysbiosis as compared to infants without BPD (NoBPD, p = 0.0398, permutational multivariate ANOVA). Instead of fungal communities dominated by Candida and Saccharomyces, the microbiota of infants who developed BPD were characterized by a greater diversity of rarer fungi in less interconnected community architectures. On successful colonization, the gut microbiota from infants with BPD augmented lung injury in the offspring of recipient animals. We identified alterations in the murine intestinal microbiome and transcriptome associated with augmented lung injury. Conclusions: The gut fungal microbiome of infants who will develop BPD is dysbiotic and may contribute to disease pathogenesis. |
Databáze: | MEDLINE |
Externí odkaz: |