Circularly polarized differential intra-oral antenna design validation and characterization for tongue drive system.

Autor: Ahlawat S; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India., Kanaujia BK; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.; Dr. Ambedkar National Institute of Technology, Jalandhar, 144011, India., Rambabu K; Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada., Peter I; Department of Industrial Engineering and Management, Faculty of Engineering and Information Technology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139, Târgu-Mureş, Romania. ildiko.peter@umfst.ro., Matekovits L; Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Turin, Italy.; Department of Measurements and Optical Electronics, Politehnica University Timisoara, 300223, Timisoara, Romania.; Instituto di Elettronica e di Ingegneria dell'informazione e delle Telecomunicazioni, National Research Council of Italy, 10129, Turin, Italy.
Jazyk: angličtina
Zdroj: Scientific reports [Sci Rep] 2023 Jun 19; Vol. 13 (1), pp. 9935. Date of Electronic Publication: 2023 Jun 19.
DOI: 10.1038/s41598-023-36717-w
Abstrakt: Assistive devices are becoming increasingly popular for physically disabled persons suffering tetraplegia and spinal cord injuries. Intraoral tongue drive system (iTDS) is one of the most feasible and non-invasive assistive technology (AT), which utilises the transferring and inferring of user intentions through different tongue gestures. Wireless transferring is of prime importance and requires a suitable design of the intra-oral antenna. In this paper, a compact circularly polarized differential intra-oral antenna is designed, and its performance is analysed within heterogeneous multilayer mouth and head models. It works at 2.4 GHz in the Industrial, Scientific, and Medical (ISM) band. The footprint of the differential antenna prototype is 0.271 λ g [Formula: see text] 0.271 λ g [Formula: see text] 0.015 λ g . It is achieved using two pairs of spiral segments loaded in diagonal form near the edges of the central rotated square slot and a high dielectric constant substrate. Its spiral-slotted geometry further provides the desired swirling and miniaturization at the desired frequency band for both mouth scenarios. Additionally, corner triangular slits on the radiating patch assist in tuning the axial ratio (< 3 dB) in the desired ISM band. To validate the performance of the proposed in-mouth antenna, the measurement was carried out using the minced pork and the saline solution for closed and opened mouth cases, respectively. The measured - 10 dB impedance bandwidth and peak gain values in the minced pork are from 2.28 to 2.53 GHz (10.39%) and - 18.17 dBi, respectively, and in the saline solution, are from 2.3 to 2.54 GHz (9.92%) and - 15.47 dBi, respectively. Further, the specific absorption rate (SAR) is estimated, and the data communication link is computed with and without a balun loss. This confirms that the proposed differential intraoral antenna can establish direct interfacing at the RF front end of the intraoral tongue drive system.
(© 2023. The Author(s).)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje