MiR-150 regulates the Leishmania infantum parasitic load and granzyme B levels in peripheral blood mononuclear cells of dogs with canine visceral leishmaniosis.

Autor: Soares MF; Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil., Costa SF; Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil., de Freitas JH; Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil., Rebech GT; Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil., Dos Santos MO; Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil., de Lima VMF; Department of Clinical Medicine, Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, 793 Clóvis Pestana St., Araçatuba, São Paulo, 16050-680, Brazil. Electronic address: valeria.lima@unesp.br.
Jazyk: angličtina
Zdroj: Veterinary parasitology [Vet Parasitol] 2023 Aug; Vol. 320, pp. 109958. Date of Electronic Publication: 2023 May 22.
DOI: 10.1016/j.vetpar.2023.109958
Abstrakt: Leishmania infantum causes visceral leishmaniosis, a neglected tropical disease that can modulate the host immune response by altering the expression of small non-coding RNAs called microRNAs (miRNAs). Some miRNAs are differentially expressed in peripheral blood mononuclear cells (PBMCs) of dogs with canine visceral leishmaniosis (CanL), like the down-regulated miR-150. Even though miR-150 is negatively correlated with L. infantum parasitic load, it is unclear if miR-150 directly affects L. infantum parasitic load and (if so) how this miRNA would contribute to infection. Here, we isolated PBMCs from 14 naturally infected dogs (CanL group) and six healthy dogs (Control group) and treated them in vitro with miR-150 mimic or inhibitor. We measured L. infantum parasitic load using qPCR and compared treatments. We also measured miR-150 in silico predicted target protein levels (STAT1, TNF-α, HDAC8, and GZMB) using flow cytometry or enzyme-linked immunosorbent assays. Increasing miR-150 activity diminished L. infantum parasitic load in CanL PBMCs. We also found that inhibition of miR-150 reduced GZMB (granzyme B) levels. These findings demonstrate that miR-150 plays an important role in L. infantum infection in canine PBMCs, and they merit further studies aiming at drug development.
Competing Interests: Declaration of Competing Interest The authors declare that they have no competing interests.
(Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE