Attosecond Real-Time Observation of Recolliding Electron Trajectories in Helium at Low Laser Intensities.

Autor: Heldt T; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany., Dubois J; Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany., Birk P; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany., Borisova GD; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany., Lando GM; Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany., Ott C; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany., Pfeifer T; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
Jazyk: angličtina
Zdroj: Physical review letters [Phys Rev Lett] 2023 May 05; Vol. 130 (18), pp. 183201.
DOI: 10.1103/PhysRevLett.130.183201
Abstrakt: Laser-driven recollision physics is typically accessible only at field intensities high enough for tunnel ionization. Using an extreme ultraviolet pulse for ionization and a near-infrared (NIR) pulse for driving of the electron wave packet lifts this limitation. This allows us to study recollisions for a broad range of NIR intensities with transient absorption spectroscopy, making use of the reconstruction of the time-dependent dipole moment. Comparing recollision dynamics with linear vs circular NIR polarization, we find a parameter space, where the latter favors recollisions, providing evidence for the so far only theoretically predicted recolliding periodic orbits.
Databáze: MEDLINE