Sloppiness: Fundamental study, new formalism and its application in model assessment.
Autor: | Jagadeesan P; Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India.; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India., Raman K; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India., Tangirala AK; Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India.; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India. |
---|---|
Jazyk: | angličtina |
Zdroj: | PloS one [PLoS One] 2023 Mar 08; Vol. 18 (3), pp. e0282609. Date of Electronic Publication: 2023 Mar 08 (Print Publication: 2023). |
DOI: | 10.1371/journal.pone.0282609 |
Abstrakt: | Computational modelling of biological processes poses multiple challenges in each stage of the modelling exercise. Some significant challenges include identifiability, precisely estimating parameters from limited data, informative experiments and anisotropic sensitivity in the parameter space. One of these challenges' crucial but inconspicuous sources is the possible presence of large regions in the parameter space over which model predictions are nearly identical. This property, known as sloppiness, has been reasonably well-addressed in the past decade, studying its possible impacts and remedies. However, certain critical unanswered questions concerning sloppiness, particularly related to its quantification and practical implications in various stages of system identification, still prevail. In this work, we systematically examine sloppiness at a fundamental level and formalise two new theoretical definitions of sloppiness. Using the proposed definitions, we establish a mathematical relationship between the parameter estimates' precision and sloppiness in linear predictors. Further, we develop a novel computational method and a visual tool to assess the goodness of a model around a point in parameter space by identifying local structural identifiability and sloppiness and finding the most sensitive and least sensitive parameters for non-infinitesimal perturbations. We demonstrate the working of our method in benchmark systems biology models of various complexities. The pharmacokinetic HIV infection model analysis identified a new set of biologically relevant parameters that can be used to control the free virus in an active HIV infection. Competing Interests: The Authors declare no Competing Financial or Non-Financial Interests. (Copyright: © 2023 Jagadeesan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |