A domain-knowledge modeling of hospital-acquired infection risk in Healthcare personnel from retrospective observational data: A case study for COVID-19.

Autor: Huynh PK; Department of Industrial and Management Systems Engineering, University of South Florida, Tampa, FL, United States of America.; Department of Industrial and Manufacturing Engineering, North Dakota State University, Fargo, North Dakota, United States of America., Setty AR; University of North Dakota, Fargo, North Dakota, United States of America.; Sanford Hospital, Fargo, North Dakota, United States of America., Tran QM; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America., Yadav OP; Department of Industrial and Systems Engineering, North Carolina A&T State University, Greensboro, North Carolina, United States of America., Yodo N; Department of Industrial and Manufacturing Engineering, North Dakota State University, Fargo, North Dakota, United States of America., Le TQ; Department of Industrial and Management Systems Engineering, University of South Florida, Tampa, FL, United States of America.; Department of Industrial and Manufacturing Engineering, North Dakota State University, Fargo, North Dakota, United States of America.
Jazyk: angličtina
Zdroj: PloS one [PLoS One] 2022 Nov 21; Vol. 17 (11), pp. e0272919. Date of Electronic Publication: 2022 Nov 21 (Print Publication: 2022).
DOI: 10.1371/journal.pone.0272919
Abstrakt: Introduction: Hospital-acquired infections of communicable viral diseases (CVDs) have been posing a tremendous challenge to healthcare workers globally. Healthcare personnel (HCP) is facing a consistent risk of viral infections, and subsequently higher rates of morbidity and mortality.
Materials and Methods: We proposed a domain-knowledge-driven infection risk model to quantify the individual HCP and the population-level risks. For individual-level risk estimation, a time-variant infection risk model is proposed to capture the transmission dynamics of CVDs. At the population-level, the infection risk is estimated using a Bayesian network model constructed from three feature sets, including individual-level factors, engineering control factors, and administrative control factors. For model validation, we investigated the case study of the Coronavirus disease, in which the individual-level and population-level infection risk models were applied. The data were collected from various sources such as COVID-19 transmission databases, health surveys/questionaries from medical centers, U.S. Department of Labor databases, and cross-sectional studies.
Results: Regarding the individual-level risk model, the variance-based sensitivity analysis indicated that the uncertainty in the estimated risk was attributed to two variables: the number of close contacts and the viral transmission probability. Next, the disease transmission probability was computed using a multivariate logistic regression applied for a cross-sectional HCP data in the UK, with the 10-fold cross-validation accuracy of 78.23%. Combined with the previous result, we further validated the individual infection risk model by considering six occupations in the U.S. Department of Labor O*Net database. The occupation-specific risk evaluation suggested that the registered nurses, medical assistants, and respiratory therapists were the highest-risk occupations. For the population-level risk model validation, the infection risk in Texas and California was estimated, in which the infection risk in Texas was lower than that in California. This can be explained by California's higher patient load for each HCP per day and lower personal protective equipment (PPE) sufficiency level.
Conclusion: The accurate estimation of infection risk at both individual level and population levels using our domain-knowledge-driven infection risk model will significantly enhance the PPE allocation, safety plans for HCP, and hospital staffing strategies.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: © 2022 Huynh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje