Protein adsorption on a nanoparticle with a nanostructured surface.
Autor: | Canpolat C; Biomedical Engineering Department, Faculty of Engineering, Cukurova University, Adana, Turkey., Tatlisoz MM; Biomedical Engineering Department, Faculty of Engineering, Cukurova University, Adana, Turkey. |
---|---|
Jazyk: | angličtina |
Zdroj: | Electrophoresis [Electrophoresis] 2022 Dec; Vol. 43 (23-24), pp. 2324-2333. Date of Electronic Publication: 2022 Aug 02. |
DOI: | 10.1002/elps.202200009 |
Abstrakt: | In the present study, the adsorption of a protein on a nanoparticle with a nanostructured surface, which is created using successively patterned Gaussian pillars (GPs), is simulated by considering the charge regulation within the electrical double layer of a silica nanoparticle (NP). Namely, the mathematical models for the adsorption mechanism, such as classical Langmuir model, extended Langmuir model, and two-state model, are coupled with charge regulation model. By this means, size and pH variables are able to included to the calculations. Moreover, free space, surface curvature, and conformational changes are also taken into account. For systematic investigation, the solution's pH, surface charge density, initial protein concentration, electrostatic charge of the protein, and the diameter of the spherical NP are varied. As a result, the vital properties of a nanoparticle, such as protonation/deprotonation, polarization, topography, and morphology, are considered in the current simulations. The surface charge density and surface chemistry change with NP and GP sizes. The present results reveal that the protein adsorption on an NP with a smooth surface reaches a faster complete surface coverage than an NP with a nanostructured surface. Both states of conformational changes are also affected by the presence of the GP. (© 2022 Wiley-VCH GmbH.) |
Databáze: | MEDLINE |
Externí odkaz: |