Contribution of sediment contamination to multi-stress in lowland waters.

Autor: Wieringa N; Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands. Electronic address: n.wieringa@uva.nl., van der Lee GH; Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands., de Baat ML; Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands., Kraak MHS; Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands., Verdonschot PFM; Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
Jazyk: angličtina
Zdroj: The Science of the total environment [Sci Total Environ] 2022 Oct 20; Vol. 844, pp. 157045. Date of Electronic Publication: 2022 Jun 30.
DOI: 10.1016/j.scitotenv.2022.157045
Abstrakt: Water bodies in densely populated lowland areas are often impacted by multiple stressors. At these multi-stressed sites, it remains challenging to quantify the contribution of contaminated sediments. This study, therefore, aimed to elucidate the contribution of sediment contamination in 16 multi-stressed drainage ditches throughout the Netherlands. To this end an adjusted TRIAD framework was applied, where 1) contaminants and other variables in the sediment and the overlying water were measured, 2) whole-sediment laboratory bioassays were performed using larvae of the non-biting midge Chironomus riparius, and 3) the in situ benthic macroinvertebrate community composition was determined. It was hypothesized that the benthic macroinvertebrate community composition would respond to all jointly present stressors in both water and sediment, whereas the whole-sediment bioassays would only respond to the stressors present in the sediment. The benthic macroinvertebrate community composition was indeed related to multiple stressors in both water and sediment. Taxa richness was positively correlated with the presence of PO 4 -P in the water, macrophyte cover and some pesticides. Evenness, the number of Trichoptera families and the SPEAR pesticides were positively correlated to the C:P ratios in the sediment, whilst negative correlations were observed with various contaminants in both the water and sediment. The whole-sediment bioassays with C. riparius positively related to the nutrient content of the sediment, whereas no negative relations to the sediment-associated contaminants were observed, even though the lowered SPEAR pesticides index indicated contaminant effects in the field. Therefore, it was concluded that sediment contamination was identified as one of the various stressors that potentially drove the benthic macroinvertebrate community composition in the multi-stressed drainage ditches, but that nutrients may have masked the adverse effects caused by low and diverse sediment contaminants on C. riparius in the bioassays.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE