Permutation Jensen-Shannon distance: A versatile and fast symbolic tool for complex time-series analysis.

Autor: Zunino L; Centro de Investigaciones Ópticas (CONICET La Plata-CIC-UNLP), 1897 Gonnet, La Plata, Argentina.; Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Argentina., Olivares F; Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain., Ribeiro HV; Departamento de Física, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil., Rosso OA; Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil.
Jazyk: angličtina
Zdroj: Physical review. E [Phys Rev E] 2022 Apr; Vol. 105 (4-2), pp. 045310.
DOI: 10.1103/PhysRevE.105.045310
Abstrakt: The main motivation of this paper is to introduce the permutation Jensen-Shannon distance, a symbolic tool able to quantify the degree of similarity between two arbitrary time series. This quantifier results from the fusion of two concepts, the Jensen-Shannon divergence and the encoding scheme based on the sequential ordering of the elements in the data series. The versatility and robustness of this ordinal symbolic distance for characterizing and discriminating different dynamics are illustrated through several numerical and experimental applications. Results obtained allow us to be optimistic about its usefulness in the field of complex time-series analysis. Moreover, thanks to its simplicity, low computational cost, wide applicability, and less susceptibility to outliers and artifacts, this ordinal measure can efficiently handle large amounts of data and help to tackle the current big data challenges.
Databáze: MEDLINE