Off-harmonic optical probing of high intensity laser plasma expansion dynamics in solid density hydrogen jets.

Autor: Bernert C; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany. c.bernert@hzdr.de.; Technische Universität Dresden, 01062, Dresden, Germany. c.bernert@hzdr.de., Assenbaum S; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Technische Universität Dresden, 01062, Dresden, Germany., Brack FE; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Technische Universität Dresden, 01062, Dresden, Germany., Cowan TE; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Technische Universität Dresden, 01062, Dresden, Germany., Curry CB; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.; University of Alberta, Edmonton, AB, T6G 1H9, Canada., Garten M; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Technische Universität Dresden, 01062, Dresden, Germany., Gaus L; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Technische Universität Dresden, 01062, Dresden, Germany., Gauthier M; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Göde S; European XFEL GmbH, 22869, Schenefeld, Germany., Goethel I; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Technische Universität Dresden, 01062, Dresden, Germany., Glenzer SH; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA., Kluge T; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany., Kraft S; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany., Kroll F; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany., Kuntzsch M; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany., Metzkes-Ng J; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany., Loeser M; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany., Obst-Huebl L; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA., Rehwald M; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Technische Universität Dresden, 01062, Dresden, Germany., Schlenvoigt HP; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany., Schoenwaelder C; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.; Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany., Schramm U; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Technische Universität Dresden, 01062, Dresden, Germany., Siebold M; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany., Treffert F; SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.; Technische Universität Darmstadt, 64289, Darmstadt, Germany., Ziegler T; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Technische Universität Dresden, 01062, Dresden, Germany., Zeil K; Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
Jazyk: angličtina
Zdroj: Scientific reports [Sci Rep] 2022 May 04; Vol. 12 (1), pp. 7287. Date of Electronic Publication: 2022 May 04.
DOI: 10.1038/s41598-022-10797-6
Abstrakt: Due to the non-linear nature of relativistic laser induced plasma processes, the development of laser-plasma accelerators requires precise numerical modeling. Especially high intensity laser-solid interactions are sensitive to the temporal laser rising edge and the predictive capability of simulations suffers from incomplete information on the plasma state at the onset of the relativistic interaction. Experimental diagnostics utilizing ultra-fast optical backlighters can help to ease this challenge by providing temporally resolved inside into the plasma density evolution. We present the successful implementation of an off-harmonic optical probe laser setup to investigate the interaction of a high-intensity laser at [Formula: see text] peak intensity with a solid-density cylindrical cryogenic hydrogen jet target of [Formula: see text] diameter as a target test bed. The temporal synchronization of pump and probe laser, spectral filtering and spectrally resolved data of the parasitic plasma self-emission are discussed. The probing technique mitigates detector saturation by self-emission and allowed to record a temporal scan of shadowgraphy data revealing details of the target ionization and expansion dynamics that were so far not accessible for the given laser intensity. Plasma expansion speeds of up to [Formula: see text] followed by full target transparency at [Formula: see text] after the high intensity laser peak are observed. A three dimensional particle-in-cell simulation initiated with the diagnosed target pre-expansion at [Formula: see text] and post processed by ray tracing simulations supports the experimental observations and demonstrates the capability of time resolved optical diagnostics to provide quantitative input and feedback to the numerical treatment within the time frame of the relativistic laser-plasma interaction.
(© 2022. The Author(s).)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje