American Sign Language Words Recognition of Skeletal Videos Using Processed Video Driven Multi-Stacked Deep LSTM.

Autor: Abdullahi SB; Department of Computer Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.; Zonal Criminal Investigation Department, The Nigeria Police, Louis Edet House Force Headquarters, Shehu Shagari Way, Abuja 900221, Nigeria., Chamnongthai K; Department of Electronic and Telecommunication Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
Jazyk: angličtina
Zdroj: Sensors (Basel, Switzerland) [Sensors (Basel)] 2022 Feb 11; Vol. 22 (4). Date of Electronic Publication: 2022 Feb 11.
DOI: 10.3390/s22041406
Abstrakt: Complex hand gesture interactions among dynamic sign words may lead to misclassification, which affects the recognition accuracy of the ubiquitous sign language recognition system. This paper proposes to augment the feature vector of dynamic sign words with knowledge of hand dynamics as a proxy and classify dynamic sign words using motion patterns based on the extracted feature vector. In this method, some double-hand dynamic sign words have ambiguous or similar features across a hand motion trajectory, which leads to classification errors. Thus, the similar/ambiguous hand motion trajectory is determined based on the approximation of a probability density function over a time frame. Then, the extracted features are enhanced by transformation using maximal information correlation. These enhanced features of 3D skeletal videos captured by a leap motion controller are fed as a state transition pattern to a classifier for sign word classification. To evaluate the performance of the proposed method, an experiment is performed with 10 participants on 40 double hands dynamic ASL words, which reveals 97.98% accuracy. The method is further developed on challenging ASL, SHREC, and LMDHG data sets and outperforms conventional methods by 1.47%, 1.56%, and 0.37%, respectively.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje