Synthesis and Characterization of Imidazolium-Based Ionic Liquids and Evaluating Their Performance as Asphaltene Dispersants.

Autor: Ghanem A; PVT-Lab, Production Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt., Alharthy RD; Department of Chemistry, Science & Arts College, Rabigh Branch, King Abdulaziz University, Rabigh 21911, Saudi Arabia., Desouky SM; PVT-Lab, Production Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt., El-Nagar RA; Oil Lab Analysis, Analysis & Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt.
Jazyk: angličtina
Zdroj: Materials (Basel, Switzerland) [Materials (Basel)] 2022 Feb 21; Vol. 15 (4). Date of Electronic Publication: 2022 Feb 21.
DOI: 10.3390/ma15041600
Abstrakt: With the projected increase in the production of heavy oil due to the energy crisis, asphaltene-related issues are likely to come to the forefront. This leads to operational problems, safety hazards, and oil production deficiencies, resulting in huge economic losses for the petroleum industry. Therefore, in this work, we aimed to inhibit asphaltene precipitation using ionic liquid (IL) compounds. ILs with long alkyl chains can inhibit the precipitation of asphaltene molecules due to the π-π* interactions between them and the formation of hydrogen bonds. A series of imidazolium-based ionic liquids, IL-0, IL-4, IL-10, and IL-16, were synthesized with yield percents of 79, 81, 80, and 83%, respectively. The prepared materials were characterized well using FTIR, 1 H-NMR, and Elemental Analysis. The surface tension, interfacial tension (IFT), and different surface parameters were investigated at different temperatures to simulate the reservoir temperature. IL-0, IL-4, IL-10, and IL-16 displayed their γ cmc values at 35, 34, 31, and 32 mN/m at 303 °K, respectively. It was found that the prepared ILs are good surfactants with low values of interfacial tension. Quantum structure-activity relationships using Density Functional Theory (DFT) were used to investigate the geometry optimization electronic structures, the energy gap (ΔE), and the reactivity of the cations of the prepared ILs. The synthesized ILs were evaluated as asphaltene dispersants using two different techniques. The viscometric technique showed that the asphaltene onset precipitation was 28.5 vol.%. This percent was postponed to 42.8, 50, 78.5, and 64.3 vol.%, after adding IL-0, IL-4, IL-10, and IL-16, respectively, and the spectroscopic technique confirmed the results.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje