Early developmental, meiosis-specific proteins - Spo11, Msh4-1, and Msh5 - Affect subsequent genome reorganization in Paramecium tetraurelia.

Autor: Rzeszutek I; Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland; Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland., Swart EC; Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tuebingen, Germany., Pabian-Jewuła S; Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Centre of Postgraduate Medical Education, Department of Clinical Cytology, Marymoncka 99/103, 01-813 Warsaw, Poland., Russo A; Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Medical Biochemistry and Molecular Biology Department, UKS, Saarland Medical Center, Kirrberger Str. 100, 66421 Homburg, Germany., Nowacki M; Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland. Electronic address: mariusz.nowacki@izb.unibe.ch.
Jazyk: angličtina
Zdroj: Biochimica et biophysica acta. Molecular cell research [Biochim Biophys Acta Mol Cell Res] 2022 Jun; Vol. 1869 (6), pp. 119239. Date of Electronic Publication: 2022 Feb 15.
DOI: 10.1016/j.bbamcr.2022.119239
Abstrakt: Developmental DNA elimination in Paramecium tetraurelia occurs through a trans-nuclear comparison of the genomes of two distinct types of nuclei: the germline micronucleus (MIC) and the somatic macronucleus (MAC). During sexual reproduction, which starts with meiosis of the germline nuclei, MIC-limited sequences including Internal Eliminated Sequences (IESs) and transposons are eliminated from the developing MAC in a process guided by noncoding RNAs (scnRNAs and iesRNAs). However, our current understanding of this mechanism is still very limited. Therefore, studying both genetic and epigenetic aspects of these processes is a crucial step to understand this phenomenon in more detail. Here, we describe the involvement of homologs of classical meiotic proteins, Spo11, Msh4-1, and Msh5 in this phenomenon. Based on our analyses, we propose that proper functioning of Spo11, Msh4-1, and Msh5 during Paramecium sexual reproduction are necessary for genome reorganization and viable progeny. Also, we show that double-strand breaks (DSBs) in DNA induced during meiosis by Spo11 are crucial for proper IESs excision. In summary, our investigations show that early sexual reproduction processes may significantly influence later somatic genome integrity.
(Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE